首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   785篇
  免费   92篇
  国内免费   16篇
  2024年   8篇
  2023年   16篇
  2022年   14篇
  2021年   19篇
  2020年   14篇
  2019年   24篇
  2018年   26篇
  2017年   22篇
  2016年   20篇
  2015年   15篇
  2014年   40篇
  2013年   43篇
  2012年   32篇
  2011年   48篇
  2010年   50篇
  2009年   66篇
  2008年   68篇
  2007年   64篇
  2006年   48篇
  2005年   28篇
  2004年   28篇
  2003年   20篇
  2002年   17篇
  2001年   9篇
  2000年   8篇
  1999年   10篇
  1998年   5篇
  1997年   8篇
  1996年   5篇
  1995年   8篇
  1994年   7篇
  1993年   3篇
  1992年   3篇
  1991年   4篇
  1990年   4篇
  1989年   3篇
  1985年   6篇
  1984年   10篇
  1983年   7篇
  1982年   15篇
  1981年   8篇
  1980年   5篇
  1979年   9篇
  1978年   4篇
  1976年   4篇
  1975年   7篇
  1974年   3篇
  1973年   2篇
  1972年   1篇
  1971年   2篇
排序方式: 共有893条查询结果,搜索用时 15 毫秒
131.
Peptide deformylase (PDF) catalyzes the removal of formyl group from the N-terminal methionine residues of nascent proteins in prokaryotes, and this enzyme is a high priority target for antibiotic design. In pursuit of delineating the structural-functional features of Escherichia coli PDF (EcPDF), we investigated the mechanistic pathway for the guanidinium chloride (GdmCl)-induced unfolding of the enzyme by monitoring the secondary structural changes via CD spectroscopy. The experimental data revealed that EcPDF is a highly stable enzyme, and it undergoes slow denaturation in the presence of varying concentrations of GdmCl. The most interesting aspect of these studies has been the abrupt reversal of the unfolding pathway at low to moderate concentrations of the denaturant, but not at high concentration. An energetic rationale for such an unprecedented feature in protein chemistry is offered.  相似文献   
132.

Background

Heme oxidative degradation has been extensively investigated in peroxidases but not in catalases. The verdoheme formation, a product of heme oxidation which inactivates the enzyme, was studied in Proteus mirabilis catalase.

Methods

The verdoheme was generated by adding peracetic acid and analyzed by mass spectrometry and spectrophotometry.

Results

Kinetics follow-up of different catalase reactional intermediates shows that i) the formation of compound I always precedes that of verdoheme, ii) compound III is never observed, iii) the rate of compound II decomposition is not compatible with that of verdoheme formation, and iv) dithiothreitol prevents the verdoheme formation but not that of compound II, whereas NADPH prevents both of them. The formation of verdoheme is strongly inhibited by EDTA but not increased by Fe3+ or Cu2+ salts. The generation of verdoheme is facilitated by the presence of protein radicals as observed in the F194Y mutated catalase. The inability of the inactive variant (H54F) to form verdoheme, indicates that the heme oxidation is fully associated to the enzyme catalysis.

Conclusion

These data, taken together, strongly suggest that the verdoheme formation pathway originates from compound I rather than from compound II.

General significance

The autocatalytic verdoheme formation is likely to occur in vivo.  相似文献   
133.
The ability of proteins and their complexes to withstand or respond to mechanical stimuli is vital for cells to maintain their structural organisation, to relay external signals and to facilitate unfolding and remodelling. Force spectroscopy using the atomic force microscope allows the behaviour of single protein molecules under an applied extension to be investigated and their mechanical strength to be quantified. protein L, a simple model protein, displays moderate mechanical strength and is thought to unfold by the shearing of two mechanical sub-domains. Here, we investigate the importance of side-chain packing for the mechanical strength of protein L by measuring the mechanical strength of a series of protein L variants containing single conservative hydrophobic volume deletion mutants. Of the five thermodynamically destabilised variants characterised, only one residue (I60V) close to the interface between two mechanical sub-domains was found to differ in mechanical properties to wild type (ΔFI60V-WT = − 36 pN at 447 nm s− 1, ΔxuI60V-WT = 0.2 nm). Φ-value analysis of the unfolding data revealed a highly native transition state. To test whether the number of hydrophobic contacts across the mechanical interface does affect the mechanical strength of protein L, we measured the mechanical properties of two further variants. protein L L10F, which increases core packing but does not enhance interfacial contacts, increased mechanical strength by 13 ± 11 pN at 447 nm s− 1. By contrast, protein L I60F, which increases both core and cross-interface contacts, increased mechanical strength by 72 ± 13 pN at 447 nm s− 1. These data suggest a method by which nature can evolve a varied mechanical response from a limited number of topologies and demonstrate a generic but facile method by which the mechanical strength of proteins can be rationally modified.  相似文献   
134.
Fusion of one protein domain with another is a common event in both evolution and protein engineering experiments. When insertion is at an internal site (e.g., a surface loop or turn), as opposed to one of the termini, conformational strain can be introduced into both domains. Strain is manifested by an antagonistic folding-unfolding equilibrium between the two domains, which we previously showed can be parameterized by a coupling free-energy term (ΔGX). The extent of strain is predicted to depend primarily on the ratio of the N-to-C distance of the guest protein to the distance between ends of the surface loop in the host protein. Here, we test that hypothesis by inserting ubiquitin (Ub) into the bacterial ribonuclease barnase (Bn), using peptide linkers from zero to 10 amino acids each. ΔGX values are determined by measuring the extent to which Co2+ binding to an engineered site on the Ub domain destabilizes the Bn domain. All-atom, unforced Langevin dynamics simulations are employed to gain structural insight into the mechanism of mechanically induced unfolding. Experimental and computational results find that the two domains are structurally and energetically uncoupled when linkers are long and that ΔGX increases with decreasing linker length. When the linkers are fewer than two amino acids, strain is so great that one domain unfolds the other. However, the protein is able to refold as dimers and higher-order oligomers. The likely mechanism is a three-dimensional domain swap of the Bn domain, which relieves conformational strain. The simulations suggest that an effective route to mechanical unfolding begins with disruption of the hydrophobic core of Bn near the Ub insertion site.  相似文献   
135.
Protein biopharmaceuticals are an important and growing area of human therapeutics; however, the intrinsic property of proteins to adopt alternative conformations (such as during protein unfolding and aggregation) presents numerous challenges, limiting their effective application as biopharmaceuticals. Using fibroblast growth factor-1 as model system, we describe a cooperative interaction between the intrinsic property of thermostability and the reactivity of buried free-cysteine residues that can substantially modulate protein functional half-life. A mutational strategy that combines elimination of buried free cysteines and secondary mutations that enhance thermostability to achieve a substantial gain in functional half-life is described. Furthermore, the implementation of this design strategy utilizing stabilizing mutations within the core region resulted in a mutant protein that is essentially indistinguishable from wild type as regard protein surface and solvent structure, thus minimizing the immunogenic potential of the mutations. This design strategy should be generally applicable to soluble globular proteins containing buried free-cysteine residues.  相似文献   
136.
Protein folding is dependent on the formation and persistence of simple loops early in folding. Ease of loop formation and persistence is believed to be dependent on the steric interactions of the residues involved in loop formation. We have previously investigated this factor in the denatured state of iso-1-cytochrome c using a five-amino-acid insert in front of a unique histidine in the N-terminal region of the protein. Previously, we reported that the apparent pKa values of loop formation for the most flexible (all Gly) and least flexible (all Ala) insert were, within error, the same. We evaluate whether this observation is due to differences in the persistence of loop contacts or due to effects of local sequence sterics and main-chain hydration on the persistence length of the chain. We also test whether sequence order affects loop formation. Here, we report kinetic results coupled to further mutagenesis of the insert to discern between these possibilities.We find that the amino acid—glycine versus alanine—next to the loop forming histidine has a dominant effect on loop kinetics and equilibria. A glycine in this position speeds loop breakage relative to alanine, resulting in less stable loops. At high percentage of Gly in the insert, rates of loop formation and breakage exactly compensate, leading to a leveling out in loop stability. Loop formation rates also increase with glycine content, inconsistent with poly-Gly segments being more extended than previously suspected due to main-chain hydration or local sterics. Unlike loop breakage rates, loop formation rates are insensitive to local sequence. Together, these observations suggest that contact persistence plays a more important role in defining the “folding code” than rates of loop formation.  相似文献   
137.
Proteins unfolded by high concentrations of chemical denaturants adopt expanded, largely structure-free ensembles of conformations that are well approximated as random coils. In contrast, globular proteins unfolded under less denaturing conditions (via mutations, or transiently unfolded after a rapid jump to native conditions) and molten globules (arising due to mutations or cosolvents) are often compact. Here we explore the origins of this compaction using a truncated equilibrium-unfolded variant of the 57-residue FynSH3 domain. As monitored by far-UV circular dichroism, NMR spectroscopy, and hydrogen-exchange kinetics, CΔ4 (a 4-residue carboxy-terminal deletion variant of FynSH3) appears to be largely unfolded even in the absence of denaturant. Nevertheless, CΔ4 is quite compact under these conditions, with a hydrodynamic radius only slightly larger than that of the native protein. In order to understand the origins of this molten-globule-like compaction, we have characterized a random sequence polypeptide of identical amino acid composition to CΔ4. Notably, we find that the hydrodynamic radius of this random sequence polypeptide also approaches that of the native protein. Thus, while native-like interactions may contribute to the formation of compact “unfolded” states, it appears that non-sequence-specific monomer-monomer interactions can also account for the dramatic compaction observed for molten globules and the “physiological” unfolded state.  相似文献   
138.
Stretching force can induce conformational changes of proteins and is believed to be an important biological signal in the mechanotransduction network. Tenascin-C is a large extracellular matrix protein and is subject to stretching force under its physiological condition. Regulating the mechanical properties of the fibronectin type III domains of tenascin-C will alter its response to mechanical stretching force and thus may provide the possibility of regulating the biological activities of tenascin-C in living cells. However, tuning the mechanical stability of proteins in a rational and systematic fashion remains challenging. Using the third fibronectin type III domain (TNfn3) of tenascin-C as a model system, here we report a successful engineering of a mechanically stronger extracellular matrix protein via engineered metal chelation. Combining steered molecular dynamics simulations, protein engineering and single-molecule atomic force microscopy, we have rationally engineered a bihistidine-based metal chelation site into TNfn3. We used its metal chelation capability to selectively increase the unfolding energy barrier for the rate-limiting step during the mechanical unfolding of TNfn3. The resultant TNfn3 mutant exhibits enhanced mechanical stability. Using a stronger metal chelator, one can convert TNfn3 back to a state of lower mechanical stability. This is the first step toward engineering extracellular matrix proteins with defined mechanical properties, which can be modulated reversibly by external stimuli, and will provide the possibility of using external stimuli to regulate the biological functions of extracellular matrix proteins.  相似文献   
139.
The homodimeric Ocr (overcome classical restriction) protein of bacteriophage T7 is a molecular mimic of double-stranded DNA and a highly effective competitive inhibitor of the bacterial type I restriction/modification system. The surface of Ocr is replete with acidic residues that mimic the phosphate backbone of DNA. In addition, Ocr also mimics the overall dimensions of a bent 24-bp DNA molecule. In this study, we attempted to delineate these two mechanisms of DNA mimicry by chemically modifying the negative charges on the Ocr surface. Our analysis reveals that removal of about 46% of the carboxylate groups per Ocr monomer results in an ∼ 50-fold reduction in binding affinity for a methyltransferase from a model type I restriction/modification system. The reduced affinity between Ocr with this degree of modification and the methyltransferase is comparable with the affinity of DNA for the methyltransferase. Additional modification to remove ∼ 86% of the carboxylate groups further reduces its binding affinity, although the modified Ocr still binds to the methyltransferase via a mechanism attributable to the shape mimicry of a bent DNA molecule. Our results show that the electrostatic mimicry of Ocr increases the binding affinity for its target enzyme by up to ∼ 800-fold.  相似文献   
140.
SlyD, the sensitive-to-lysis protein from Escherichia coli, consists of two domains. They are not arranged successively along the protein chain, but one domain, the “insert-in-flap” (IF) domain, is inserted internally as a guest into a surface loop of the host domain, which is a prolyl isomerase of the FK506 binding protein (FKBP) type. We used SlyD as a model to elucidate how such a domain insertion affects the stability and folding mechanism of the host and the guest domain. For these studies, the two-domain protein was compared with a single-domain variant SlyDΔIF, SlyD* without the chaperone domain (residues 1-69 and 130-165) in which the IF domain was removed and replaced by a short loop, as present in human FKBP12. Equilibrium unfolding and folding kinetics followed an apparent two-state mechanism in the absence and in the presence of the IF domain. The inserted domain decreased, however, the stability of the host domain in the transition region and decelerated its refolding reaction by about 10-fold. This originates from the interruption of the chain connectivity by the IF domain and its inherent instability. To monitor folding processes in this domain selectively, a Trp residue was introduced as fluorescent probe. Kinetic double-mixing experiments revealed that, in intact SlyD, the IF domain folds and unfolds about 1000-fold more rapidly than the FKBP domain, and that it is strongly stabilized when linked with the folded FKBP domain. The unfolding limbs of the kinetic chevrons of SlyD show a strong downward curvature. This deviation from linearity is not caused by a transition-state movement, as often assumed, but by the accumulation of a silent unfolding intermediate at high denaturant concentrations. In this kinetic intermediate, the FKBP domain is still folded, whereas the IF domain is already unfolded.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号