首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   876篇
  免费   65篇
  国内免费   386篇
  1327篇
  2024年   23篇
  2023年   75篇
  2022年   66篇
  2021年   79篇
  2020年   47篇
  2019年   61篇
  2018年   50篇
  2017年   50篇
  2016年   40篇
  2015年   19篇
  2014年   46篇
  2013年   76篇
  2012年   34篇
  2011年   27篇
  2010年   25篇
  2009年   52篇
  2008年   58篇
  2007年   61篇
  2006年   47篇
  2005年   51篇
  2004年   40篇
  2003年   44篇
  2002年   16篇
  2001年   27篇
  2000年   18篇
  1999年   26篇
  1998年   21篇
  1997年   18篇
  1996年   13篇
  1995年   17篇
  1994年   12篇
  1993年   10篇
  1992年   14篇
  1991年   12篇
  1990年   13篇
  1989年   5篇
  1988年   3篇
  1987年   3篇
  1986年   4篇
  1985年   2篇
  1984年   7篇
  1983年   4篇
  1982年   5篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1958年   1篇
排序方式: 共有1327条查询结果,搜索用时 0 毫秒
1.
V. Römheld 《Plant and Soil》1991,130(1-2):127-134
Phytosiderophores (PS) are released in graminaceous species (Gramineae) under iron (Fe) and zinc (Zn) deficiency stress and are of great ecological significance for acquisition of Fe and presumably also of Zn. The potential for release of PS is much higher than reported up to now. Rapid microbial degradation during PS collection from nutrient solution-grown plants is the main cause of this underestimation. Due to spatial separation of PS release and microbial activity in the rhizosphere a much slower degradation of PS can be assumed in soil-grown plants. Concentrations of PS up to molar levels have been calculated under non-sterile conditions in the rhizosphere of Fe-deficient barley plants.Besides Fe, PS mobilize also Zn, Mn and Cu. Despite this unspecific mobilization, PS mobilize appreciable amounts of Fe in calcareous soils and are of significance for chlorosis resistance of graminaceous species. In most species the rate of PS release is high enough to satisfy the Fe demand for optimal growth on calcareous soils.In contrast to the chelates ZnPS and MnPS, FePS are preferentially taken up in comparison with other soluble Fe compounds. In addition, the specific uptake system for FePS (translocator) is regulated exclusively by the Fe nutritional status. Therefore, it seems appropriate to retain the term phytosiderophore instead of phytochelate.  相似文献   
2.
Concluding remarks from the joint IUBS/IUMS workshop on Biodiversity amongst microorganisms and its relevance held in Amsterdam on 7–8 September 1991. An international microbial ecology programme can be justified in its own right now that appropriate investigative tools have been developed. Microorganisms influence global change, and indicate global health and environmental quality. At the same time, an inventory of the world's microbial species and their properties is required, together with associated culture collections and genomes. Sampling methods need to be standardized, both for species and functions. Extreme environments are a particularly rich source of microbial genomes, and endangered habitats should be sampled as a matter of priority. Cataloguing and conserving the world's microbial biodiversity is justifiable and scientifically important.  相似文献   
3.
Graminaceous species can enhance iron (Fe) acquisition from sparingly soluble inorganic Fe(III) compounds by release of phytosiderophores (PS) which mobilize Fe(III) by chelation. In most graminaceous species Fe deficiency increases the rate of PS release from roots by a factor of 10–20, but in some species, for example sorghum, this increase is much less. The chemical nature of PS can differ between species and even cultivars.The various PS are similarly effective as the microbial siderophore Desferal (ferrioxamine B methane sulfonate) in mobilizing Fe(III) from a calcareous soil. Under the same conditions the synthetic chelator DTPA (diaethylenetriamine pentaacetic acid) is ineffective.The rate of Fe(III)PS uptake by roots of graminaceous species increases by a factor of about 5 under Fe deficiency. In contrast, uptake of Fe from both synthetic and microbial Fe(III) chelates is much lower and not affected by the Fe nutritional status of the plants. This indicates that in graminaceous species under Fe deficiency a specific uptake system for FePS is activated. In contrast, the specific uptake system for FePS is absent in dicots. In a given graminaceous species the uptake rates of the various FePS are similar, but vary between species by a factor of upto 3. In sorghum, despite the low rate of PS release, the rate of FePS uptake is particularly high.The results indicate that release of PS and subsequent uptake of FePS are under different genetic control. The high susceptibility of sorghum to Fe deficiency (lime-chlorosis) is most probably caused by low rates of PS release in the early seedling stage. Therefore in sorghum, and presumably other graminaceous species also, an increase in resistance to lime chlorosis could be best achieved by breeding for cultivars with high rates of PS release. In corresponding screening procedures attention should be paid to the effects of iron nutritional status and daytime on PS release as well as on rapid microbial degradation of PS.  相似文献   
4.
The influence exerted by Pseudomonas fluorescens, strain 63-28R, in stimulating plant defense reactions was investigated using an in-vitro system in which Ri T-DNA-transformed pea (Pisum sativum L.) roots were subsequently infected with Pythium ultimum. Cytological investigations of samples from P. fluorescens-inoculated roots revealed that the bacteria multiplied abundantly at the root surface and colonized a small number of epidermal and cortical cells. Penetration of the epidermis occurred through the openings made by the disruption of the fibrillar network at the junction of adjacent epidermal cell walls. Direct cell wall penetration was never observed and bacterial ingress into the root tissues proceeded via an intercellular route. Striking differences in the extent of fungal colonization were observed between bacterized and non-bacterized pea roots following inoculation with P. ultimum. In non-bacterized roots, the pathogen multiplied abundantly through most of the tissues while in bacterized roots, pathogen growth was restricted to the epidermis and the outer cortex. At the root surface, the bacteria interacted with the pathogen, in a way similar to that observed in dual culture tests. Most Pythium cells were severely damaged but fungal penetration by the bacteria was never observed. Droplets of the amorphous material formed upon interaction between the bacteria and the host root were frequently found at the fungal cell surface. Incubation of sections with a -1,4-exoglucanase-gold complex revealed that the cell wall of markedly altered Pythium hyphae was structurally preserved. Successful penetration of the root epidermis was achieved by the few hyphae of P. ultimum that could escape the first defensive line in the rhizosphere. Most hyphae of the pathogen that penetrated the epidermis exhibited considerable changes. The unusual occurrence of polymorphic wall appositions along the host epidermal cells was an indication that the host plant was signalled to defend itself through the elaboration of physical barriers.Abbreviations AGL Aplysia gonad lectin - PGPR plant growth-promoting rhizobacteria The authors wish to thank Sylvain Noël for excellent technical assistance. This study was supported by grants from the Fonds Québécois pour la formation de chercheurs et l'Aide à la Recherche (FCAR), the Natural Sciences and Engineering Council of Canada (NSERC) and the Ministère de l'Industrie, du Commerce, de la Science et de la Technologie (SYNERGIE).  相似文献   
5.
Abstract: The microorganisms used for the mercury retention experiments were natural isolates and genetically engineered bacteria. All mercury-resistant strains contained the merA gene. Column experiments with these strains were carried out by immobilizing them on different support materials. To obtain kinetic data of the reductase activity for whole cells and the crude extract, batch experiments were carried out under different conditions.  相似文献   
6.
7.
The gut bacteria of eight tephritid species were isolated and characterized. Larvae of the genus Urophora and Tephritis dilacerata proved to house no microorganisms in their digestive organs. Bacteria were isolated from adults of five fruit fly species. Most of the bacterial strains were enterobacteria. Fruit-infesting tephritid species, flower-head species and gall formers had similar gut floras consisting of bacteria widespread in the soil and on the phylloplane.  相似文献   
8.
Integrated non-porous membrane systems were applied for microbial combustible gas separation processes. Methane/CO2 mixtures of various concentrations from methane fermentation processes (biogas) were separated using a membrane-separation complex of permabsorber type into individual components of technical grade (more than 95% purity). In experiments with three-component mixtures, using a selective membrane valve with various liquid carriers, all the gases of interest (H2, CH4 and CO2) were obtained at greater than 90% purity in one separation step. The perspectives for the further application of non-porous membrane separating devices for various gaseous mixtures from different microbial processes are discussed.V. Teplyakov and E. Sostina are with the A.V. Topchiev institute of Petrochemical Synthesis, Russian Academy of Sciences, Membrane Research Center, Moscow 117912, Russia. E. Sostina is also, and A. Netrusov is with the Microbiology Department, Moscow University, Moscow 119899, Russia. I. Beckman is with the Chemistry Department, Moscow University, Moscow 119899, Russia.  相似文献   
9.
A photomicrobial sensor consisting of immobilized Chlorella vulgaris and an oxygen electrode has been developed for selective determination of phosphate. When 40 mM phosphate was added to the sensor system, the photocurrent increased to a maximum under light irradiation with a response time of 1 min. The current increased with increasing phosphate concentration in the range 8–70 mM. Selectivity of the sensor was satisfactory. Good agreement was obtained between the phosphate concentrations in lake water determined by the photomicrobial sensor and by conventional colorimetry (correlation coefficient 0.96).  相似文献   
10.
Use of membrane filters for selective isolation of actinomycetes from soil   总被引:1,自引:0,他引:1  
Abstract A method using membrane filters of appropriate pore size, to selectively isolate actinomycetes from a mixed population of soil microorganisms, is described.
The method is based on the ability of actinomycetes to propagate and pass through the pores of filters while bacteria and fungi are retained on the membrane surface.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号