首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   569篇
  免费   65篇
  国内免费   28篇
  662篇
  2024年   2篇
  2023年   11篇
  2022年   6篇
  2021年   14篇
  2020年   17篇
  2019年   26篇
  2018年   25篇
  2017年   22篇
  2016年   28篇
  2015年   23篇
  2014年   34篇
  2013年   35篇
  2012年   25篇
  2011年   41篇
  2010年   39篇
  2009年   31篇
  2008年   32篇
  2007年   36篇
  2006年   20篇
  2005年   13篇
  2004年   20篇
  2003年   18篇
  2002年   20篇
  2001年   21篇
  2000年   23篇
  1999年   13篇
  1998年   5篇
  1997年   6篇
  1996年   8篇
  1995年   3篇
  1994年   5篇
  1993年   7篇
  1992年   8篇
  1991年   3篇
  1990年   2篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   3篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   1篇
排序方式: 共有662条查询结果,搜索用时 9 毫秒
81.
Forty-one zoological gardens in seven European countries were visited to investigate activity level in captive environments for great apes. Forty-three groups of gorillas and 68 groups of orangutans were observed. The seven factors quantified for each of the environments were size of the enclosure, usable surface area, frequency of feeding, number of animals, and number of objects (stationary, temporary, and movable). Activity level of each group was measured by instantaneous scan sampling for one hour on two consecutive days. For both species, the factors most highly related to activity level were number of animals, and stationary, temporary, and movable objects. The usefulness of these variables for predicting group activity level was different for the two species, however. Factors important for gorillas were stationary and temporary objects, while stationary and movable objects were significant for orangutans. These findings suggest that objects within environments may be more important for captive apes than the size or construction of the enclosure. Also, the types of objects that need to be included in environments may be related to the natural behavior of the individual species.  相似文献   
82.
83.
Pathogens are one of the main forces driving the evolution and maintenance of the highly polymorphic genes of the vertebrate major histocompatibility complex (MHC). Although MHC proteins are crucial in pathogen recognition, it is still poorly understood how pathogen‐mediated selection promotes and maintains MHC diversity, and especially so in host species with highly duplicated MHC genes. Sedge warblers (Acrocephalus schoenobaenus) have highly duplicated MHC genes, and using data from high‐throughput MHC genotyping, we were able to investigate to what extent avian malaria parasites explain temporal MHC class I supertype fluctuations in a long‐term study population. We investigated infection status and infection intensities of two different strains of Haemoproteus, that is avian malaria parasites that are known to have significant fitness consequences in sedge warblers. We found that prevalence of avian malaria in carriers of specific MHC class I supertypes was a significant predictor of their frequency changes between years. This finding suggests that avian malaria infections partly drive the temporal fluctuations of the MHC class I supertypes. Furthermore, we found that individuals with a large number of different supertypes had higher resistance to avian malaria, but there was no evidence for an optimal MHC class I diversity. Thus, the two studied malaria parasite strains appear to select for a high MHC class I supertype diversity. Such selection may explain the maintenance of the extremely high number of MHC class I gene copies in sedge warblers and possibly also in other passerines where avian malaria is a common disease.  相似文献   
84.
Identifying the factors that influence spatial genetic structure among populations can provide insights into the evolution of invasive plants. In this study, we used the common reed (Phragmites australis), a grass native in Europe and invading North America, to examine the relative importance of geographic, environmental (represented by climate here), and human effects on population genetic structure and its changes during invasion. We collected samples of P. australis from both the invaded North American and native European ranges and used molecular markers to investigate the population genetic structure within and between ranges. We used path analysis to identify the contributions of each of the three factors—geographic, environmental, and human‐related—to the formation of spatial genetic patterns. Genetic differentiation was observed between the introduced and native populations, and their genetic structure in the native and introduced ranges was different. There were strong effects of geography and environment on the genetic structure of populations in the native range, but the human‐related factors manifested through colonization of anthropogenic habitats in the introduced range counteracted the effects of environment. The between‐range genetic differences among populations were mainly explained by the heterogeneous environment between the ranges, with the coefficient 2.6 times higher for the environment than that explained by the geographic distance. Human activities were the primary contributor to the genetic structure of the introduced populations. The significant environmental divergence between ranges and the strong contribution of human activities to the genetic structure in the introduced range suggest that invasive populations of P. australis have evolved to adapt to a different climate and to human‐made habitats in North America.  相似文献   
85.
I compared the mtDNA compositions of two adjacent populations of Vermivora chrysoptera (golden-winged warbler) at different stages of transient hybridization with its sister species V. pinus (blue-winged warbler). Pinus mtDNA introgresses asymmetrically and perhaps rapidly into chrysoptera phenotypes without comparable reverse introgression of chrysoptera mtDNA into replacing pinus populations. Pinus mtDNA was virtually fixed (98%) in an actively hybridizing lowland population with varied phenotypes. Pinus mtDNA increased from 27% (n = 11) in 1988 to 70% (n = 10) in 1992 in successive samples of a highland population in the initial stages of hybridization. This population comprised mostly pure and slightly introgressed chrysoptera phenotypes. The rapid pace of asymmetrical introgression may be the result of initial invasion of chrysoptera populations by pioneering female pinus and/or an unknown competitive advantage of pinus females and their daughters over chrysoptera females.  相似文献   
86.
87.
Sleep is a universal behavior in vertebrate and invertebrate animals, suggesting it originated in the very first life forms. Given the vital function of sleep, sleeping patterns and sleep architecture follow dynamic and adaptive processes reflecting trade-offs to different selective pressures. Here, we review responses in sleep and sleep-related behavior to environmental constraints across primate species, focusing on the role of great ape nest building in hominid evolution. We summarize and synthesize major hypotheses explaining the proximate and ultimate functions of great ape nest building across all species and subspecies; we draw on 46 original studies published between 2000 and 2017. In addition, we integrate the most recent data brought together by researchers from a complementary range of disciplines in the frame of the symposium “Burning the midnight oil” held at the 26th Congress of the International Primatological Society, Chicago, August 2016, as well as some additional contributors, each of which is included as a “stand-alone” article in this “Primate Sleep” symposium set. In doing so, we present crucial factors to be considered in describing scenarios of human sleep evolution: (a) the implications of nest construction for sleep quality and cognition; (b) the tree-to-ground transition in early hominids; (c) the peculiarities of human sleep. We propose bridging disciplines such as neurobiology, endocrinology, medicine, and evolutionary ecology, so that future research may disentangle the major functions of sleep in human and nonhuman primates, namely its role in energy allocation, health, and cognition.  相似文献   
88.
89.
Inbreeding results in more homozygous offspring that should suffer reduced fitness, but it can be difficult to quantify these costs for several reasons. First, inbreeding depression may vary with ecological or physiological stress and only be detectable over long time periods. Second, parental homozygosity may indirectly affect offspring fitness, thus confounding analyses that consider offspring homozygosity alone. Finally, measurement of inbreeding coefficients, survival and reproductive success may often be too crude to detect inbreeding costs in wild populations. Telomere length provides a more precise measure of somatic costs, predicts survival in many species and should reflect differences in somatic condition that result from varying ability to cope with environmental stressors. We studied relative telomere length in a wild population of Seychelles warblers (Acrocephalus sechellensis) to assess the lifelong relationship between individual homozygosity, which reflects genome‐wide inbreeding in this species, and telomere length. In juveniles, individual homozygosity was negatively associated with telomere length in poor seasons. In adults, individual homozygosity was consistently negatively related to telomere length, suggesting the accumulation of inbreeding depression during life. Maternal homozygosity also negatively predicted offspring telomere length. Our results show that somatic inbreeding costs are environmentally dependent at certain life stages but may accumulate throughout life.  相似文献   
90.
Whether an exotic species becomes integrated into a community or aggressively takes it over depends upon many interacting factors. Using contextual analyses, we combined genetic data about an invasive plant with information about the neighboring species, the community, and the environment to determine what factors enable a genotype or species to invade. We transplanted 50 individuals of each of three clones of the invasive grass Phalaris arundinacea, reed canary grass, into 150 random locations within a Vermont pasture. For each individual, we recorded clonal identity, neighbor identity, community indices (species richness and species diversity), and an environmental variable (soil moisture). The response variables were survivorship, above-ground biomass, below-ground biomass and the ratio of above- to below-ground biomass. Clonal identity affected both survivorship and below-ground biomass. The fastest tillering clone had poor survivorship but survivors produced a large amount of below-ground biomass, making this clone more likely to successfully overwinter. Neighbor species affected above- and below-ground biomass. Reed canary grass produced more above- and below-ground biomass when Anthoxanthum odoratum, a common pasture grass species, was abundant. Community attributes also influenced growth. Although we expected diverse plots to repel the invasion, plants in the more diverse plots had higher amounts of below-ground biomass. Finally, environmental effects also influenced growth. Reed canary grass produced more above-ground biomass in wetter plots, confirming that it does well under wet conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号