首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8029篇
  免费   569篇
  国内免费   255篇
  2023年   149篇
  2022年   229篇
  2021年   175篇
  2020年   239篇
  2019年   294篇
  2018年   345篇
  2017年   247篇
  2016年   246篇
  2015年   314篇
  2014年   400篇
  2013年   714篇
  2012年   343篇
  2011年   471篇
  2010年   458篇
  2009年   479篇
  2008年   491篇
  2007年   509篇
  2006年   473篇
  2005年   484篇
  2004年   349篇
  2003年   230篇
  2002年   229篇
  2001年   100篇
  2000年   88篇
  1999年   80篇
  1998年   75篇
  1997年   88篇
  1996年   55篇
  1995年   57篇
  1994年   65篇
  1993年   39篇
  1992年   37篇
  1991年   22篇
  1990年   26篇
  1989年   20篇
  1988年   17篇
  1987年   28篇
  1986年   7篇
  1985年   24篇
  1984年   41篇
  1983年   26篇
  1982年   24篇
  1981年   16篇
  1980年   14篇
  1979年   8篇
  1978年   8篇
  1977年   3篇
  1976年   4篇
  1975年   4篇
  1974年   5篇
排序方式: 共有8853条查询结果,搜索用时 15 毫秒
141.
Pacific geoducks (Panopea generosa) are clams found along the northeast Pacific coast where they are important components of coastal and estuarine ecosystems and a major aquaculture product. The Pacific coastline, however, is also experiencing rapidly changing ocean habitat, including significant reductions in pH. To better understand the physiological impact of ocean acidification on geoduck clams, we characterized for the first time the proteomic profile of this bivalve during larval development and compared it to that of larvae exposed to low pH conditions. Geoduck larvae were reared at pH 7.5 (ambient) or pH 7.1 in a commercial shellfish hatchery from day 6 to day 19 postfertilization and sampled at six time points for an in‐depth proteomics analysis using high‐resolution data‐dependent analysis. Larvae reared at low pH were smaller than those reared at ambient pH, especially in the prodissoconch II phase of development, and displayed a delay in their competency for settlement. Proteomic profiles revealed that metabolic, cell cycle, and protein turnover pathways differed between the two pH and suggested that differing phenotypic outcomes between pH 7.5 and 7.1 are likely due to environmental disruptions to the timing of physiological events. In summary, ocean acidification results in elevated energetic demand on geoduck larvae, resulting in delayed development and disruptions to normal molecular developmental pathways, such as carbohydrate metabolism, cell growth, and protein synthesis.  相似文献   
142.
Background: The pandemic of novel coronavirus disease 2019 (COVID-19) has become a serious public health crisis worldwide. The symptoms of COVID-19 vary from mild to severe among different age groups, but the physiological changes related to COVID-19 are barely understood.Methods: In the present study, a high-resolution mass spectrometry (HRMS)-based lipidomic strategy was used to characterize the endogenous plasma lipids for cured COVID-19 patients with different ages and symptoms. These patients were further divided into two groups: those with severe symptoms or who were elderly and relatively young patients with mild symptoms. In addition, automated lipidomic identification and alignment was conducted by LipidSearch software. Multivariate and univariate analyses were used for differential comparison.Results: Nearly 500 lipid compounds were identified in each cured COVID-19 group through LipidSearch software. At the level of lipid subclasses, patients with severe symptoms or elderly patients displayed dramatic changes in plasma lipidomic alterations, such as increased triglycerides and decreased cholesteryl esters (ChE). Some of these differential lipids might also have essential biological functions. Furthermore, the differential analysis of plasma lipids among groups was performed to provide potential prognostic indicators, and the change in signaling pathways.Conclusions: Dyslipidemia was observed in cured COVID-19 patients due to the viral infection and medical treatment, and the discharged patients should continue to undergo consolidation therapy. This work provides valuable knowledge about plasma lipid markers and potential therapeutic targets of COVID-19 and essential resources for further research on the pathogenesis of COVID-19.  相似文献   
143.
BackgroundElemental analysis has been increasingly used for biomonitoring heavy metals and trace elements.MethodsThis study monitored the levels of two heavy metals (Al and Pb), and seven trace elements (Macroelements Mg, K, P and Ca; Microelements Zn, Cu, Fe) in scalp hair of 57 children with severe autism spectrum disorder (ASD) and 50 age-matched controls, using Inductively Coupled Plasma Atomic Emission Spectrophotometry (ICP-AES).ResultsCompared to controls, significantly higher levels of Al (p = 0.001), Pb (p = 0.001) and K (p = 0.021), with lower levels of Mg and Zn (p = 0.038) were observed for the ASD group. ASD boys had higher levels of Al (p = 0.001), Pb (p = 0.001) and K (p = 0.017) than control boys, while ASD girls had higher Pb levels (p = 0.005) than control girls. The ASD subgroup exposed to passive smokers had higher levels of Al (p = 0.033) and Pb (p = 0.001, and the ASD subgroup not exposed to passive smoke had higher levels of Al (p = 0.011), Pb (p = 0.001), K (p = 0.003); and lower levels of Mg (p = 0.011) than their controls. Other confounding factors and the correlation between these elements were also investigated.ConclusionThis data suggests that exposure to Al and Pb, increase intake of K, and decreased intake of magnesium and zinc, may contribute to ASD etiology.  相似文献   
144.
145.
为探究不同热风干燥温度对荷叶离褶伞干燥特性及挥发性风味物质的影响。本研究比较了8种常见干燥动力学模型对荷叶离褶伞干燥过程拟合的适用性,采用GC-IMS技术,对不同干燥温度处理下荷叶离褶伞的挥发性风味物质进行测定。结果表明:荷叶离褶伞热风干燥为典型的降速干燥,Midilli-Kucuk模型可以较好地描述其热风干燥过程(R2>0.99791,RMSE<0.0152,χ2<2.31×10-4);温度对荷叶离褶伞风味物质影响显著,在5个干燥温度处理下的荷叶离褶伞中共鉴定到47种挥发性风味物质,包括醛类13种、酮类8种、醇类13种、酯类5种和其他类8种。随着干燥温度升高(55-75℃),醛类物质相对含量呈下降趋势,而醇类、酮类以及其他物质(乙酸等)略有上升趋势。  相似文献   
146.
Specialized pro‐resolving mediators actively limit inflammation and support tissue regeneration, but their role in age‐related muscle dysfunction has not been explored. We profiled the mediator lipidome of aging muscle via liquid chromatography‐tandem mass spectrometry and tested whether treatment with the pro‐resolving mediator resolvin D1 (RvD1) could rejuvenate the regenerative ability of aged muscle. Aged mice displayed chronic muscle inflammation and this was associated with a basal deficiency of pro‐resolving mediators 8‐oxo‐RvD1, resolvin E3, and maresin 1, as well as many anti‐inflammatory cytochrome P450‐derived lipid epoxides. Following muscle injury, young and aged mice produced similar amounts of most pro‐inflammatory eicosanoid metabolites of cyclooxygenase (e.g., prostaglandin E2) and 12‐lipoxygenase (e.g., 12‐hydroxy‐eicosatetraenoic acid), but aged mice produced fewer markers of pro‐resolving mediators including the lipoxins (15‐hydroxy‐eicosatetraenoic acid), D‐resolvins/protectins (17‐hydroxy‐docosahexaenoic acid), E‐resolvins (18‐hydroxy‐eicosapentaenoic acid), and maresins (14‐hydroxy‐docosahexaenoic acid). Similar absences of downstream pro‐resolving mediators including lipoxin A4, resolvin D6, protectin D1/DX, and maresin 1 in aged muscle were associated with greater inflammation, impaired myofiber regeneration, and delayed recovery of strength. Daily intraperitoneal injection of RvD1 had minimal impact on intramuscular leukocyte infiltration and myofiber regeneration but suppressed inflammatory cytokine expression, limited fibrosis, and improved recovery of muscle function. We conclude that aging results in deficient local biosynthesis of specialized pro‐resolving mediators in muscle and that immunoresolvents may be attractive novel therapeutics for the treatment of muscular injuries and associated pain in the elderly, due to positive effects on recovery of muscle function without the negative side effects on tissue regeneration of non‐steroidal anti‐inflammatory drugs.  相似文献   
147.
The development of different approaches to use agricultural residues as a source of high value-added products, become a must, especially after the problems emerged due to their accumulation. This contribution demonstrates the potential of agricultural residues, Linuim usitatissium (flax seed) and Nigella sativa (black seed) peels, as raw materials for the production of bioactive products, botanical insecticides, against Cx. pipiens, with deep analysis to their chemical constituents by gas chromatography-mass spectrometry, the larvicidal efficacies of the three crude extracts (methylene chloride, petroleum ether and methanol 70%) from the two plant waste peels were evaluated for the first time against the late third instar larvae of Cx. pipiens. Results indicated different lethal doses in larvae depending on the efficacy of organic solvent used. For both compounds methanol 70% extracts produced the highest dry yield. The most efficient solvent is petroleum ether in case of both flax and Black seed peels. Petroleum ether extract exhibited the highest toxicity against Cx. pipiens with an LC50 of 69.6383 ppm. The same results for black seed indicated that petroleum ether was the most efficient against Cx. pipiens with an LC50 of 40.7748 ppm. The study revealed for the first time the type of phytochemical constituents presents in peels of flax and black seeds using GC–MS analysis which revealed twenty-eight constituents among extracts of flax and black seed peels ranging from to 58.8711% to 99.99% of the total extracts. GC–MS profiling showed that a five constituents, 9-2-Methyl-Z, Z-3, 13 octadecadienol (terpenoid), 9,17-Octadecadienal, (Z)-, Nonanoic acid, 9-oxo-, methyl ester, 9,12-Octadecadienoic acid Z,Z and Octasiloxane, 1,1,3,3,5,5,7,7,9,9,11,11,13,13,15,15-hexadecamethyl- have insecticidal activity beside many other biological activities as recorded from a variety of botanical extracts. While the constituents like Hexadecanoic acid, methyl ester and cis-9-Hexadecenal, both of them are larvicidal, cis-Vaccenic acid and 9-Oxononanoic acid showing only an insecticidal activity beside Undecanoic acid the mosquito repellent. The other six constituents Linoelaidic acid, Oleic Acid, Z-2-Octadecen-1-ol, 1-Methoxy-3-hydroxymethylheptane, Cis-11,14–Eicosadieonic acid-methyl ester and Heptasiloxane, 1,1,3,3,5,5,7,7,9,9,11,11,13,13-tetradecamethyl- are constituents of other plant extracts which showed as a whole an insecticidal activity.  相似文献   
148.
149.
Amyloid is a diverse group of unrelated peptides or proteins that have positive functionality or are associated with various pathologies. Despite vast differences, all amyloids share several features that together uniquely define the group. 1) All amyloids possess a characteristic cross-ß pattern with X-ray diffraction typical of ß-sheet secondary protein structures. 2) All amyloids are birefringent and dichroic under polarizing microscopy after staining with Congo red, which indicates a crystalline-like (ordered) structure. 3) All amyloids cause a spectral shift in the peak wavelength of Congo red with conventional light microscopy due to perturbation of π electrons of the dye. 4) All amyloids show heightened intensity of fluorescence with Congo red, which suggests an unusual degree of packing of the dye onto the substrate. The ß portion of amyloid molecules, the only logical substrate for specific Congo red staining under histochemical conditions, consists of a stack of ß-sheets laminated by hydrophilic and hydrophobic interactions between adjacent pairs. Only the first and last ß-sheets are accessible to dyes. Each sheet is composed of numerous identical peptides running across the width of the sheet and arranged in parallel with side chains in register over the length of the fibril. Two sets of grooves are bordered by side chains. X grooves run perpendicular to the long axis of the fibril; these grooves are short (the width of the sheet) and number in the hundreds or thousands. Y grooves are parallel with the long axis. Each groove runs the entire length of the fibril, but there are very few of them. While Congo red is capable of ionic bonding with proteins via two sulfonic acid groups, physical constraints on the staining solution preclude ionic interactions. Hydrogen bonding between dye amine groups and peptide carbonyls is the most likely primary bonding mechanism, because all ß-sheets possess backbone carbonyls. Various amino acid residues may form secondary bonds to the dye via any of three van der Waals forces. It is possible that Congo red binds within the Y grooves, but that would not produce the characteristic staining features that are the diagnostic hallmarks of amyloid. Binding in the X grooves would produce a tightly packed series of dye molecules over the entire length of the fibril. This would account for the signature staining of amyloid by Congo red: dichroic birefringence, enhanced intensity of fluorescence and a shift in visible absorption wavelength.  相似文献   
150.
《Free radical research》2013,47(11-12):1355-1365
Abstract

Constitutive heat shock protein 70 (Hsc70) is a molecular chaperone that has been shown to protect cardiomyocytes against oxidative stress. However, the molecular mechanism responsible for this protection remains uncertain. To understand the mechanism associated with the myocardial protective role of Hsc70, we have embarked upon a systematic search for Hsc70-interacting proteins. Using adenosine diphosphate (ADP) affinity chromatography and mass spectrometry, we have identified α-enolase, a rate-limiting enzyme in glycolysis, as a novel Hsc70-interacting protein in the myocardium of both sham and myocardial ischemia-reperfused Sprague–Dawley rat hearts. This interaction was confirmed by co-immunoprecipitation (IP) assays in the myocardial tissues and H9c2 cardiomyocytes and protein overlay assay (POA). It was further shown that Hsc70-overexpression alleviated the H2O2-induced decrease of α-enolase activity and cell damage, and Hsc70 deficiency aggravated the decrease of α-enolase activity and cell damage in H2O2 treated H9c2 cells. Our research suggests that the protective effect of Hsc70 on the cardiomyocytes against oxidative stress is partly associated with its interaction with α-enolase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号