首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   672篇
  免费   43篇
  国内免费   14篇
  2023年   11篇
  2022年   13篇
  2021年   13篇
  2020年   10篇
  2019年   15篇
  2018年   20篇
  2017年   8篇
  2016年   10篇
  2015年   18篇
  2014年   41篇
  2013年   39篇
  2012年   31篇
  2011年   26篇
  2010年   34篇
  2009年   39篇
  2008年   52篇
  2007年   33篇
  2006年   39篇
  2005年   41篇
  2004年   33篇
  2003年   32篇
  2002年   16篇
  2001年   23篇
  2000年   16篇
  1999年   15篇
  1998年   11篇
  1997年   8篇
  1996年   8篇
  1995年   4篇
  1994年   6篇
  1993年   7篇
  1992年   5篇
  1991年   7篇
  1990年   9篇
  1989年   9篇
  1988年   5篇
  1987年   5篇
  1986年   5篇
  1985年   6篇
  1984年   2篇
  1982年   2篇
  1977年   1篇
  1976年   1篇
排序方式: 共有729条查询结果,搜索用时 15 毫秒
11.
Dissolved organic carbon (DOC) dynamics were examined over five years (1989–1993) in Sycamore Creek, a Sonoran Desert stream, specifically focusing on DOC concentration in surface and hyporheic waters, and rates of export. In 1989 and 1990, the years of lowest stream discharge (0.08 and 0.04 m3 s–1 annual mean of daily discharge, respectively), DOC was high, averaging 7.37 and 6.22 mgC l–1 (weighted annual means). In contrast, from 1991 through 1993, a period of increased flow (1.1, 1.2 and 4.3 m3 s–1), concentration was significantly lower (P<0.001) with annual mean concentrations of 3.54, 3.49 and 3.39 mgC l–1. Concentration exhibited little spatial variation between two sampling stations located 6 km apart along the mainstem or between surface and hyporheic waters. Annual export of DOC from Sycamore Creek varied 100-fold over the five-year period from a mean rate of only 24 kgC d–1 in 1990 to 2100 kgC d–1 in 1993. Ninety percent of DOC was exported by flows greater than 2.8 m3 s–1, and 50% during flows greater than 27 m3 s–1; flows of 2.8 and 24 m3 s–1 occurred only 9 and 1% of the time. The export of organic matter in Sycamore Creek appears to be coupled to El Niño-Southern Oscillation phenomena. The years of highest export, 1991–1993, had El Niño conditions while 1989 and 1990 had medial conditions.  相似文献   
12.
13.
The product of the malE—lacZ gene fusion was reported to compete with some proteins including outer membrane lipoprotein in the protein translocation across the Echerichia coli membrane. The fusion product also inhibited colicin E1 export. Furthermore, globomycin, which accumulated prolipoprotein in the membrane, inhibited the translocation of colicin E1 in the wild-type cells, but not in lipoprotein-negative mutant cells. Since colicin E1 contains the internal signal-like sequence [Proc. Natl. Acad. Sci. USA (1982) 79, 2827–2831], these results suggest that colicin E1 is exported by the aid of this sequence at a common site for maltose-binding protein and lipoprotein translocation.  相似文献   
14.
The importin α/β transport machinery mediates the nuclear import of cargo proteins that bear a classical nuclear localization sequence (cNLS). These cargo proteins are linked to the major nuclear protein import factor, importin‐β, by the importin‐α adapter, after which cargo/carrier complexes enter the nucleus through nuclear pores. In the nucleus, cargo is released by the action of RanGTP and the nuclear pore protein Nup2, after which the importins are recycled to the cytoplasm for further transport cycles. The nuclear export of importin‐α is mediated by Cse1/CAS. Here, we exploit structures of functionally important complexes to identify residues that are critical for these interactions and provide insight into how cycles of protein import and recycling of importin‐α occur in vivo using a Saccharomyces cerevisiae model. We examine how these molecular interactions impact protein localization, cargo import, function and complex formation. We show that reversing the charge of key residues in importin‐α (Arg44) or Cse1 (Asp220) results in loss of function of the respective proteins and impairs complex formation both in vitro and in vivo. To extend these results, we show that basic residues in the Nup2 N‐terminus are required for both Nup2 interaction with importin‐α and Nup2 function. These results provide a more comprehensive mechanistic model of how Cse1, RanGTP and Nup2 function in concert to mediate cNLS‐cargo release in the nucleus.  相似文献   
15.
16.
Pulmonary surfactant is essential for life and is composed of a complex lipoprotein-like mixture that lines the inner surface of the lung to prevent alveolar collapse at the end of expiration. The molecular composition of surfactant depends on highly integrated and regulated processes involving its biosynthesis, remodeling, degradation, and intracellular trafficking. Despite its multicomponent composition, the study of surfactant phospholipid metabolism has focused on two predominant components, disaturated phosphatidylcholine that confers surface-tension lowering activities, and phosphatidylglycerol, recently implicated in innate immune defense. Future studies providing a better understanding of the molecular control and physiological relevance of minor surfactant lipid components are needed. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.  相似文献   
17.
The aquatic pathway is increasingly being recognized as an important component of catchment carbon and greenhouse gas (GHG) budgets, particularly in peatland systems due to their large carbon store and strong hydrological connectivity. In this study, we present a complete 5‐year data set of all aquatic carbon and GHG species from an ombrotrophic Scottish peatland. Measured species include particulate and dissolved forms of organic carbon (POC, DOC), dissolved inorganic carbon (DIC), CO2, CH4 and N2O. We show that short‐term variability in concentrations exists across all species and this is strongly linked to discharge. Seasonal cyclicity was only evident in DOC, CO2 and CH4 concentration; however, temperature correlated with monthly means in all species except DIC. Although the temperature correlation with monthly DOC and POC concentrations appeared to be related to biological productivity in the terrestrial system, we suggest the temperature correlation with CO2 and CH4 was primarily due to in‐stream temperature‐dependent solubility. Interannual variability in total aquatic carbon concentration was strongly correlated with catchment gross primary productivity (GPP) indicating a strong potential terrestrial aquatic linkage. DOC represented the largest aquatic carbon flux term (19.3 ± 4.59 g C m?2 yr?1), followed by CO2 evasion (10.0 g C m?2 yr?1). Despite an estimated contribution to the total aquatic carbon flux of between 8 and 48%, evasion estimates had the greatest uncertainty. Interannual variability in total aquatic carbon export was low in comparison with variability in terrestrial biosphere–atmosphere exchange, and could be explained primarily by temperature and precipitation. Our results therefore suggest that climatic change is likely to have a significant impact on annual carbon losses through the aquatic pathway, and as such, aquatic exports are fundamental to the understanding of whole catchment responses to climate change.  相似文献   
18.
Curcumin is the major constituent of turmeric plant, an ancient spice widely used in Indian cuisine and traditional herbal medicine. Recently, the potential medical use of curcumin as anti‐cancer and anti‐inflammatory agent has set off an upsurge in research into the mechanism for its broad biological effects. We showed that CRM1, an important nuclear exportin, is a cellular target of curcumin by serious experimental and theoretical investigation. Using a nuclear export functional assay, we observed a clear and rapid shift of cargo proteins from a cytoplasmic localization to the nucleus when treated with curcumin or its structural analogue dibenzylideneacetone (DBA). We demonstrated that curcumin could specifically target the conserved Cys528 of CRM1 through mass spectrometric analysis and in vivo experiments. Furthermore, computational modeling has revealed that curcumin could be correctly docked into the hydrophobic pocket of CRM1 judged from shape complementarity and putative molecular interactions. The Michael acceptor moiety on curcumin is within the appropriate distance to enable Michael reaction with Cys residue of CRM1. More importantly, we showed that nuclear retention of FOXO1 could be observed in the presence of Leptomycin B (LMB) or curcumin whereas in cells expressing the CRM1‐Cys528 mutant, only a cytoplasmic localization was observed. The inhibition of nuclear traffic by curcumin may account for its myriad of biological effects, particularly for its therapeutic properties in cancer and inflammatory diseases. Our findings may have important implications for further clinical investigation of curcumin .  相似文献   
19.
20.
The mammalian LIN complex (LINC) plays important roles in regulation of cell cycle genes. LIN54 is an essential core subunit of the LINC and has a DNA binding region (CHC domain), which consists of two cysteine-rich (CXC) domains separated by a short spacer. We generated various LIN54 mutants, such as CHC deletion mutant, and investigated their subcellular localizations and effects on cell cycle. Wild-type LIN54 was predominantly localized in the nucleus. We identified two nuclear localization signals (NLSs), both of which were required for nuclear localization of LIN54. Interestingly, deletion of one CXC domain resulted in an increased cytoplasmic localization. The cytoplasmic LIN54 mutant accumulated in the nucleus after leptomycin B treatment, suggesting CRM1-mediated nuclear export of LIN54. Point mutations (C525Y and C611Y) in conserved cysteine residues of CXC domain that abolish DNA binding activity also increased cytoplasmic localization. These data suggest that DNA binding activity of LIN54 is required for its nuclear retention. We also found that LIN54C525Y and LIN54C611Y inhibited cell cycle progression and led to abnormal nuclear morphology. Other CXC mutants also induced similar abnormalities in cell cycle progression. LIN54C525Y led to a decreased expression of some G2/M genes, whose expressions are regulated by LINC. This cell cycle inhibition was partially restored by overexpression of wild-type LIN54. These results suggest that abnormal cellular localization of LIN54 may have effects on LINC activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号