首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   3篇
  国内免费   7篇
  43篇
  2022年   3篇
  2021年   1篇
  2016年   2篇
  2015年   1篇
  2014年   5篇
  2013年   7篇
  2012年   4篇
  2011年   1篇
  2010年   2篇
  2008年   3篇
  2006年   1篇
  2004年   6篇
  2003年   2篇
  2002年   4篇
  1995年   1篇
排序方式: 共有43条查询结果,搜索用时 0 毫秒
11.
The influenza A virus is a causative agent of influenza, which infects human cells and uses host factors to accomplish viral genome replication as part of its life cycle. The nucleoprotein (NP) and PB2 of the influenza virus associate with importin α1 to gain access to the host nucleus through a ternary import complex. Killer cell-mediated cytotoxicity is the primary mechanism of eliminating the influenza virus. Here, we showed that lymphokine-activated killer cells participated in the elimination of the influenza virus. Granzyme (Gzm) K inhibition elevated viral replication in vitro and aggravated viral infection in vivo. We identified that importin α1 and its transport partner protein importin β are physiological substrates of GzmK. Proteolysis of these two substrates wrecked their association to generate the importin α1/β dimer and disrupted transportation of viral NP to the nucleus, leading to inhibition of influenza virus replication.  相似文献   
12.
已知凋亡过程的基本变化之一是细胞骨架的异常,后者在某种程度上决定凋亡细胞的形态学特征.为揭示凋亡相关蛋白酶--颗粒酶B和胱天蛋白酶-3对胞浆型肌动蛋白的水解作用,采用成年猕猴脑组织粗提物作为无细胞体系,以外源性颗粒酶B触发凋亡途径的终末反应.经一系列免疫印迹分析发现:孵育12 h方见β-肌动蛋白被剪切,产生41 ku和15 ku水解片段,并证明该水解反应为颗粒酶B依赖;颗粒酶B活化的内源性胱天蛋白酶-3和重组胱天蛋白酶-3均不能水解脑提取物中的β-肌动蛋白,尽管胱天蛋白酶-3可作用于纯化的肌动蛋白,产生15 ku片段.以上结果提示,内源性β-肌动蛋白对凋亡相关蛋白酶,尤其胱天蛋白酶-3不敏感,这可能与该蛋白质的空间结构特征或脑组织中存在的某种蛋白酶抑制因子有关.  相似文献   
13.
The crucial issue for defining successful natural killer (NK)-based anticancer therapy is the ability of tumor cells to activate resistance mechanisms leading to escape from NK-mediated killing. It is now well established that such mechanisms are likely evolved under hypoxia in the tumor microenvironment. Here, we show that hypoxia-induced autophagy impairs breast cancer cell susceptibility to NK-mediated lysis and that this impairment is reverted by targeting autophagy. We provide evidence that activation of autophagy in hypoxic cells is involved in selective degradation of the pro-apoptotic NK-derived serine protease GZMB/granzyme B, thereby blocking NK-mediated target cell apoptosis. Our in vivo data validate the concept that targeting autophagy in cancer cells promotes tumor regression by facilitating their elimination by NK cells. This study provides a cutting-edge advance in our understanding of how hypoxia-induced autophagy impairs NK-mediated lysis and might pave the way for formulating more effective NK-based antitumor therapy by combining autophagy inhibitors.  相似文献   
14.
Natural killer (NK) cells are lymphocytes with an innate abilityto recognize and kill infected cells and tumour cells. UnlikeB and T cells, NK cells do not express an antigen receptor.Instead, NK cells detect changes in the phenotype of the targetcell surface; malignant transformation or infection resultingin the loss or gain of particular molecules that are detectedby inhibitory or activating receptors on the NK cell surface.The identification and characterization of NK cells and theirreceptors was made possible by monoclonal antibody technology.The ease with which genes and gene products can now be identifiedand manipulated has accelerated our understanding of NK cellfunction. Furthermore, gene and protein profiling studies arebeginning to refine our understanding of NK cells, their interactionswith other cells and their effector mechanisms. This reviewillustrates some of the basic features of NK cell biology andhighlights the contribution made by post-genomic technologyin defining the molecular mechanisms by which NK cells identifyand kill susceptible targets.   相似文献   
15.
To identify candidate autoantigens associated with arthritis, a rat chondrocyte cDNA library was immunoscreened with serum from a patient with rheumatoid arthritis. One isolated cDNA encoded part of AHNAK, a 700-kDa phosphoprotein with DNA binding properties, that appears to be involved in several signal transduction pathways. Immunoreactivity against an in vitro translated human AHNAK fragment was detected in 4.6% (5/109) of patients with rheumatoid arthritis, 29.5% (18/61) of patients with systemic lupus erythematosus (SLE), and 1.2% (2/172) of blood donors. Anti-AHNAK antibodies reacted with a recombinant human AHNAK fragment and with native AHNAK from C32 cell lysates. In vitro translated AHNAK fragment could be cleaved by granzyme B and caspase-3. Anti-AHNAK positive SLE patients had a higher frequency of homogeneous antinuclear antibody staining patterns and a lower frequency of recent mucosal ulcerations. This is the first report that AHNAK can be targeted by the immune system in autoimmune disease.  相似文献   
16.
Granzyme M (GzmM), an orphan Gzm, is constitutively and abundantly expressed in innate effector natural killer cells. We previously demonstrated that GzmM induces caspase (casp)-dependent apoptosis and cytochrome c release from mitochondria. We also resolved the crystal structure for GzmM and generated its specific inhibitor. However, how GzmM causes casp activation has not been defined. Here we found that casp-8 is an initiator caspase in GzmM-induced casp cascade, which causes other casp activation and Bid cleavage. GzmM does not directly cleave procaspase-3 and Bid, whose processing is casp dependent. Casp-8 knockdown or deficient cells attenuate or abolish GzmM-induced proteolysis of procaspase-3 and Bid. Extrinsic death receptor pathway adaptor Fas-associated protein with death domain (FADD) contributes to GzmM-induced casp-8 activation. GzmM specifically cleaves FADD after Met 196 to generate truncated FADD (tFADD) that enhances its self-association for oligomerization. The oligomerized tFADD facilitates procaspase-8 recruitment to promote its auto-processing leading to casp activation cascade. FADD-deficient cells abrogate GzmM-induced activation of casp-8 and apoptosis as well as significantly inhibit lymphokine-activated killer cell-mediated cytotoxicity. FADD processing by GzmM can potentiate killing efficacy against tumor cells and intracellular pathogens.  相似文献   
17.
The granule-exocytosis pathway is the major mechanism via which cytotoxic lymphocytes eliminate virus-infected and tumor cells. In this pathway, cytotoxic lymphocytes release granules containing the pore-forming protein perforin and a family of serine proteases known as granzymes into the immunological synapse. Pore-formation by perforin facilitates entry of granzymes into the target cell, where they can activate various (death) pathways. Humans express five different granzymes, of which granzymes A and B have been most extensively characterized. However, much less is known about granzyme M (GrM). Recently, structural analysis and advanced proteomics approaches have determined the primary and extended specificity of GrM. GrM functions have expanded over the past few years: not only can GrM efficiently induce cell death in tumor cells, it can also inhibit cytomegalovirus replication in a noncytotoxic manner. Finally, a role for GrM in lipopolysaccharide-induced inflammatory responses has been proposed. In this review, we recapitulate the current status of GrM expression, substrate specificity, functions, and inhibitors.  相似文献   
18.
Cytotoxic lymphocyte protease granzyme M (GrM) is a potent inducer of tumor cell death. The apoptotic phenotype and mechanism by which it induces cell death, however, remain poorly understood and controversial. Here, we show that GrM-induced cell death was largely caspase-dependent with various hallmarks of classical apoptosis, coinciding with caspase-independent G2/M cell cycle arrest. Using positional proteomics in human tumor cells, we identified the nuclear enzyme topoisomerase II alpha (topoIIα) as a physiological substrate of GrM. Cleavage of topoIIα by GrM at Leu1280 separated topoIIα functional domains from the nuclear localization signals, leading to nuclear exit of topoIIα catalytic activity, thereby rendering it nonfunctional. Similar to the apoptotic phenotype of GrM, topoIIα depletion in tumor cells led to cell cycle arrest in G2/M, mitochondrial perturbations, caspase activation, and apoptosis. We conclude that cytotoxic lymphocyte protease GrM targets topoIIα to trigger cell cycle arrest and caspase-dependent apoptosis.  相似文献   
19.
In the large-intestinal mucosae of rats orally administered dextran sulfate sodium, which induces an enteritis resembling ulcerative colitis (UC), the activity for granzyme A, a lymphocyte tryptase, increased at an earlier stage than that at which UC markers (growth-regulated gene product/cytokine-induced neutrophil chemoattractant-1 and caspase-3) increased. This suggests involvement of the enzyme in the exacerbation and perpetuation of enteritis.  相似文献   
20.
Granzyme B (GrB), acting similar to an apical caspase, efficiently activates a proteolytic cascade after intracellular delivery by perforin. Studies here were designed to learn whether the physiologic effector, GrB-serglycin, initiates apoptosis primarily through caspase-3 or through BH3-only proteins with subsequent mitochondrial permeabilization and apoptosis. Using four separate cell lines that were either genetically lacking the zymogen or rendered deficient in active caspase-3, we measured apoptotic indices within whole cells (active caspase-3, mitochondrial depolarization [DeltaPsim] and TUNEL). Adhering to these conditions, the following were observed in targets after GrB delivery: (a) procaspase-3-deficient cells fail to display a reduced DeltaPsim and DNA fragmentation; (b) Bax/Bak is required for optimal DeltaPsim reduction, caspase-3 activation, and DNA fragmentation, whereas BID cleavage is undetected by immunoblot; (c) Bcl-2 inhibits GrB-mediated apoptosis (reduced DeltaPsim and TUNEL reactivity) by blocking oligomerization of caspase-3; and (d) in procaspase-3-deficient cells a mitochondrial-independent pathway was identified which involved procaspase-7 activation, PARP cleavage, and nuclear condensation. The data therefore support the existence of a fully implemented apoptotic pathway initiated by GrB, propagated by caspase-3, and perpetuated by a mitochondrial amplification loop but also emphasize the presence of an ancillary caspase-dependent, mitochondria-independent pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号