首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1929篇
  免费   139篇
  国内免费   114篇
  2023年   21篇
  2022年   14篇
  2021年   61篇
  2020年   75篇
  2019年   55篇
  2018年   76篇
  2017年   71篇
  2016年   86篇
  2015年   75篇
  2014年   87篇
  2013年   219篇
  2012年   59篇
  2011年   73篇
  2010年   76篇
  2009年   76篇
  2008年   84篇
  2007年   92篇
  2006年   88篇
  2005年   76篇
  2004年   77篇
  2003年   70篇
  2002年   76篇
  2001年   56篇
  2000年   62篇
  1999年   63篇
  1998年   37篇
  1997年   34篇
  1996年   37篇
  1995年   22篇
  1994年   22篇
  1993年   23篇
  1992年   17篇
  1991年   11篇
  1990年   7篇
  1989年   14篇
  1988年   8篇
  1987年   6篇
  1986年   3篇
  1985年   6篇
  1984年   7篇
  1983年   4篇
  1982年   11篇
  1980年   7篇
  1979年   3篇
  1978年   7篇
  1977年   3篇
  1976年   5篇
  1975年   7篇
  1974年   4篇
  1971年   3篇
排序方式: 共有2182条查询结果,搜索用时 109 毫秒
61.
Abstract

In this paper we report the results of extensive Monte Carlo simulations of a pure fluid of Buckingham modified exponential-six molecules. Data are presented for the configurational energy and pressure covering a wide range of temperatures and densities. These data are interpreted using the generalized van der Waals partition function with a novel separation into free volume and mean potential terms. We find, surprisingly, that the Buckingham fluid is described by a simple van der Waals-like equation of state provided that the b parameter is temperature dependent and chosen in a theoretically correct manner.  相似文献   
62.
Abstract

A bulk Lennard-Jones fluid was simulated using the grand canonical Monte Carlo method. Three different sampling methods were used in the transition matrix, namely the Metropolis, Barker and a third novel method. While it can be shown that the Metropolis method will give the most accurate ensemble averages in the limit of an infinitely long run, the new method termed “Modified Barker Sampling” (MBS), is shown to be superior for the runs of practical length for the particular system studied.  相似文献   
63.
Free energy calculated in simulations on the atomic level (Monte Carlo or Molecular Dynamics) has a systematic error, if the water shell surrounding a globular protein is finite. The error (“cluster error”) is equal to a difference of free energies obtained in simulations with an infinite and finite water shell. In this work a continuum dielectric model was used to estimate the “cluster error”. A multipole expansion of the estimate was performed for a water shell with a spherical outer boundary. The expansion has very simple form. Each term is a product of two functions, one of them depending only on the charge's conformation, and the other one only on dielectric properties of the system. There are two practical uses of the expansion. First, it may be used to estimate the “cluster error” in a simulation already made; second, it may be used to plan a simulation in such a way that the “cluster error” is minimal. Numerical values of the largest terms in the multipole expansion corresponding to a typical system in simulations of globular proteins are given.  相似文献   
64.
Abstract

We show that the classical Metropolis Monte Carlo (MMC) algorithm converges very slowly when applied to the primitive electrolyte environment for a high charge-density polyelectrolyte. This slowness of convergence, which is due to the large density inhomogeneity around the polyelectrolyte, produces noticeable errors in the ion distribution functions for MMC runs of 1.3 × 106 trial steps started from nonequilibrium distributions. We report that an algorithm which we call DSMC (for density-scaled Monte Carlo) overcomes this problem and provides relatively rapid convergence in this application. We suggest that DSMC should be well-suited for other Monte Carlo simulations on physical systems where large density inhomogeneities occur.  相似文献   
65.
Abstract

The principle purpose of this paper is to demonstrate the use of the Inverse Monte Carlo technique for calculating pair interaction energies in monoatomic liquids from a given equilibrium property. This method is based on the mathematical relation between transition probability and pair potential given by the fundamental equation of the “importance sampling” Monte Carlo method. In order to have well defined conditions for the test of the Inverse Monte Carlo method a Metropolis Monte Carlo simulation of a Lennard Jones liquid is carried out to give the equilibrium pair correlation function determined by the assumed potential. Because an equilibrium configuration is prerequisite for an Inverse Monte Carlo simulation a model system is generated reproducing the pair correlation function, which has been calculated by the Metropolis Monte Carlo simulation and therefore representing the system in thermal equilibrium. This configuration is used to simulate virtual atom displacements. The resulting changes in atom distribution for each single simulation step are inserted in a set of non-linear equations defining the transition probability for the virtual change of configuration. The solution of the set of equations for pair interaction energies yields the Lennard Jones potential by which the equilibrium configuration has been determined.  相似文献   
66.
Abstract

The Gibbs ensemble Monte Carlo simulation has been used to calculate vapour-liquid equilibria of a Lennard-Jones (LJ) binary mixture. The mixture studied is the LB-2-1 model which has been used in our previous calculations on PVT relation and density-dependent local composition. The P-x-y relation has been established at two different temperatures and used to determine vapour-liquid coexistence region in the PVTx space.  相似文献   
67.
Abstract

We investigate the selective adsorption of xenon, argon, and methane in zeolite NaA by applying the grand canonical ensemble Monte Carlo simulation technique to an adsorbed binary mixture and to two reference systems: i) an adsorbed single component system and ii) a bulk mixture. We define and calculate selectivities and excess densities due to i) mixing and ii) adsorption in terms of differences between the binary adsorbed system and these reference systems. We observe that xenon selectively adsorbs in both xenon-argon and xenon-methane mixtures at low chemical potential (low pressure) due to its greater energetic interaction with the zeolite. However, a reversal in selectivity occurs at higher chemical potential in both of these mixtures. This is due in large part to the greater efficiency in which the smaller component “packs” in the pore as compared to the bulk. We show that the crossover in selectivity occurs at a lower chemical potential for a mixture where one component can occupy regions of the porespace inaccessible to the other. We suggest that this crossover in selectivity may be a general feature of microporous adsorption.  相似文献   
68.
Abstract

The chemical potential of a trimer and hexamer model ring system was determined by computer simulation over a range of temperatures and densities. Such ring molecules are important as model aromatic and naphthenic hydrocarbons. Thermodynamic integration of the pressure along a reversible path, Widom's ghost particle insertion method and Kirkwood's charging parameter method were used over a molecular density range of 0.05 to 0.30. Data were obtained by Monte Carlo simulation of a 96 molecule system that was modelled with a Lennard-Jones 6-12 truncated potential. The original insertion method, which does not take into account the orientation of the molecule when it is inserted, gives results for the chemical potential which deviate from that obtained using the thermodynamic pressure integration. At high density or temperature the deviation is significant. We have modified the Widom insertion technique to account for this short range orientation and find good agreement between this technique and the thermodynamic integration method for the chemical potential. We also calculated the free energy difference between our model ring molecules and ring molecules made up of hard spheres.  相似文献   
69.
We developed a search algorithm combining Monte Carlo (MC) and self-consistent mean field techniques to evolve a peptide sequence that has good binding capability to the anticodon stem and loop (ASL) of human lysine tRNA species, tRNALys3, with the ultimate purpose of breaking the replication cycle of human immunodeficiency virus-1. The starting point is the 15-amino-acid sequence, RVTHHAFLGAHRTVG, found experimentally by Agris and co-workers to bind selectively to hypermodified tRNALys3. The peptide backbone conformation is determined via atomistic simulation of the peptide-ASLLys3 complex and then held fixed throughout the search. The proportion of amino acids of various types (hydrophobic, polar, charged, etc.) is varied to mimic different peptide hydration properties. Three different sets of hydration properties were examined in the search algorithm to see how this affects evolution to the best-binding peptide sequences. Certain amino acids are commonly found at fixed sites for all three hydration states, some necessary for binding affinity and some necessary for binding specificity. Analysis of the binding structure and the various contributions to the binding energy shows that: 1) two hydrophilic residues (asparagine at site 11 and the cysteine at site 12) “recognize” the ASLLys3 due to the VDW energy, and thereby contribute to its binding specificity and 2) the positively charged arginines at sites 4 and 13 preferentially attract the negatively charged sugar rings and the phosphate linkages, and thereby contribute to the binding affinity.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号