首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3281篇
  免费   429篇
  国内免费   379篇
  2024年   18篇
  2023年   68篇
  2022年   56篇
  2021年   85篇
  2020年   166篇
  2019年   166篇
  2018年   164篇
  2017年   137篇
  2016年   154篇
  2015年   144篇
  2014年   154篇
  2013年   192篇
  2012年   155篇
  2011年   155篇
  2010年   126篇
  2009年   185篇
  2008年   179篇
  2007年   181篇
  2006年   176篇
  2005年   151篇
  2004年   124篇
  2003年   103篇
  2002年   100篇
  2001年   77篇
  2000年   74篇
  1999年   56篇
  1998年   55篇
  1997年   46篇
  1996年   37篇
  1995年   45篇
  1994年   28篇
  1993年   31篇
  1992年   39篇
  1991年   26篇
  1990年   37篇
  1989年   27篇
  1988年   19篇
  1987年   31篇
  1986年   29篇
  1985年   34篇
  1984年   49篇
  1983年   47篇
  1982年   45篇
  1981年   26篇
  1980年   31篇
  1979年   23篇
  1978年   8篇
  1977年   8篇
  1976年   6篇
  1973年   7篇
排序方式: 共有4089条查询结果,搜索用时 31 毫秒
961.
962.
The pyridoxal 5'-phosphate-dependent enzymes tyrosine phenol-lyase and tryptophan indole-lyase were encapsulated in wet nanoporous silica gels, a powerful method to selectively stabilize tertiary and quaternary protein conformations and to develop bioreactors and biosensors. A comparison of the enzyme reactivity in silica gels and in solution was carried out by determining equilibrium and kinetic parameters, exploiting the distinct spectral properties of catalytic intermediates and reaction products. The encapsulated enzymes exhibit altered distributions of ketoenamine and enolimine tautomers, increased values of inhibitors dissociation constants, slow attaining of steady-state in the presence of substrate and substrate analogs, modified steady-state distribution of catalytic intermediates, and a sixfold-eightfold decrease of specific activities. This behavior can be rationalized by a reduced conformational flexibility for the encapsulated enzymes and a selective stabilization of either the open (inactive) or the closed (active) form of the enzymes. Despite very similar structures and catalytic mechanisms, the influence of encapsulation is more pronounced for tyrosine phenol-lyase than tryptophan indole-lyase. This finding indicates that subtle structural and dynamic differences can lead to distinct interactions of the protein with the gel matrix.  相似文献   
963.
In order to understand the expression and evolution of host resistance to pathogens, we need to examine the links between genetic variability at the major histocompatibility complex (Mhc), phenotypic expression of the immune response and parasite resistance in natural populations. To do so, we characterized the Mhc class I and IIB genes of house sparrows with the goal of designing a PCR-based genotyping method for the Mhc genes using denaturing gradient gel electrophoresis (DGGE). The incredible success of house sparrows in colonizing habitats worldwide allows us to assess the importance of the variability of Mhc genes in the face of various pathogenic pressures. Isolation and sequencing of Mhc class I and IIB alleles revealed that house sparrows have fewer loci and fewer alleles than great reed warblers. In addition, the Mhc class I genes divided in two distinct lineages with different levels of polymorphism, possibly indicating different functional roles for each gene family. This organization is reminiscent of the chicken B complex and Rfp-Y system. The house sparrow Mhc hence appears to be intermediate between the great reed warbler and the chicken Mhc, both in terms of numbers of alleles and existence of within-class lineages. We specifically amplified one Mhc class I gene family and ran the PCR products on DGGE gels. The individuals screened displayed between one and ten DGGE bands, indicating that this method can be used in future studies to explore the ecological impacts of Mhc diversity.  相似文献   
964.
Identification of New World monkey MHC-DRB alleles has previously relied upon labor-intensive cloning and sequencing techniques. Here we describe a rapid and unambiguous way to distinguish DRB alleles in New World monkeys using the polymerase chain reaction (PCR), denaturing gradient gel electrophoresis (DGGE), and direct sequencing. The highly variable second exon of New World monkey DRB alleles was amplified using generic DRB primers and alleles were separated by DGGE. DNA was then reamplified from plugs removed from the gel and alleles were determined using fluorescent-based sequencing. The validity of this typing procedure was confirmed by the identification of all DRB alleles previously characterized by cloning and sequencing techniques from an individual cotton-top tamarin. Importantly, our analysis revealed DRB alleles not previously identified in this reference animal. Following validation of our technique, the protocol was employed for the characterization of MHC-DRB alleles in four other species of New World monkey: the pygmy marmoset, white-faced saki monkey, long-haired spider monkey and owl monkey. Using this technique, we identified five alleles from the cotton-top tamarin, five alleles from the owl monkey, three alleles from the long-haired spider monkey, three alleles from the white-faced saki monkey and two alleles from the pygmy marmoset. On the basis of phylogenetic tree analyses, 13 new DRB alleles were assigned to eight different MHC-DRB lineages. Whereas traditional DRB typing via cloning and sequencing provides limited information, our new technique provides a simple and relatively rapid way of identifying New World monkey MHC-DRB alleles.Nucleotide sequence data reported are available in the GenBank/EMBL/DDBJ databases under the accession numbers AJ544165–AJ544177  相似文献   
965.
Members of the genus Methanosarcina are strictly anaerobic archaea that derive their metabolic energy from the conversion of a restricted number of substrates to methane. H2 + CO2 are converted to CH4 via the CO2-reducing pathway, while methanol and methylamines are metabolized by the methylotrophic pathway. Two novel electron transport systems are involved in the process of methanogenesis. Both systems are able to use a heterodisulfide as electron acceptor and either H2 or F420H2 as electron acceptors and generate a proton-motive force by redox potential-driven H(+)-translocation. The H2:heterodisulfide oxidoreductase is composed of an F420-nonreducing hydrogenase and the heterodisulfide reductase. The latter protein is also part of the F420H2:heterodisulfide oxidoreductase system. The second component of this system is referred to as F420H2 dehydrogenase. The archaeal protein is a homologue of complex I of the respiratory chain from bacteria and mitochondria. This review focuses on the biochemical and genetic characteristics of the three energy-transducing enzymes and on the mechanisms of ion translocation.  相似文献   
966.
Characterization of Drosophila nitric oxide synthase: a biochemical study   总被引:1,自引:0,他引:1  
The heme and flavin-binding domains of Drosophila nitric oxide synthase (DNOS) were expressed in Escherichia coli using the expression vector pCW. The denatured molecular mass of the expressed protein was 152kDa along with a proteolytically cleaved product of 121kDa. The DNOS heme protein exhibited very low Ca(2+)/calmodulin-dependent NO synthase activity. The trypsin digestion patterns were different from nNOS. The full-length DNOS protein had high degree of stability against trypsin. The activity assay of trypsin-digested protein confirmed the same result. Urea dissociation profile of DNOS full-length protein showed that the reductase domain activity was much more susceptible towards urea than the oxygenase domain activity. Urea gradient gel of DNOS full-length protein established distinct transition of dissociation and unfolding in the range 3-4M urea. Reductase domain activity of full-length DNOS protein against external electron acceptors like cytochrome c indicated slow electron transfer from FMN. The bacterial expression of DNOS full-length protein represents an important development in structure-function studies of this enzyme and comparison with other mammalian NOS enzymes which is evolutionary significant.  相似文献   
967.
Toxoplasma gondii oocysts are environmentally resistant and can infect virtually all warm-blooded hosts, including humans and livestock. Little is known about the biochemical basis for this resistance of oocysts, and mechanism for excystation of T. gondii sporozoites. The objective of the present study was to evaluate different methods (mechanical fragmentation, gradients, flow cytometry) to separate and purify T. gondii oocyst walls and sporocysts. Oocyst walls were successfully separated and purified using iodixanol gradients. Sporocysts were successfully separated and purified using iodixanol and Percoll gradients. Purification was also achieved by flow cytometry. Flow cytometry with fluorescence-activated cell sorting (FACS) yielded analytical quantities of oocyst walls and intact sporocysts. Flow cytometry with FACS also proved useful for quantitation of purity obtained following iodixanol gradient fractionation. Methods reported in this paper will be useful for analytical purposes, such as proteomic analysis of components unique to this life cycle stage, development of detection methods, or excystation studies.  相似文献   
968.
We investigated the genetic background of intraspecific variation in wing color across an elevational gradient in the butterfly Colias philodice eriphyle. The degree of wing melanization was an accelerating function of elevation, and differences in wing melanization persisted in a common environment. Full-sibling analysis and parent-offspring regression yielded consistent, moderate to high heritabilities for the degree of wing melanization. The breeding experiments also demonstrated that wing melanization is strongly sex linked. Because traits that differentiate sister species also tend to be sex linked, our results suggest that the genetic mechanisms underlying intraspecific differences in wing melanization are not fundamentally different from those that have been shown to differentiate sister species.  相似文献   
969.
970.
Single cardiac ATP-sensitive K+ channels and, comparatively, two other members of the inwardly rectifying K+ channel family, cardiac K+ (ir) and K+ (ACh) channels, were studied in the inside-out recording mode in order to analyze influence and significance of the electrochemical K+ gradient for open-state kinetics of these K+ channels. The conductive state of K+ (ATP) channels was defined as a function of the electrochemical K+ gradient in that increased driving force correlates with shortened open-channel lifetime. Flux coupling of gating can be largely excluded as the underlying mechanism for two reasons: (i) τopen proved identical in 23 pS, 56 pS and 80 pS channels; (ii) K+ (ATP) channel protonation by an external pH shift from 9.5 to 5.5 reduced conductance without a concomitant detectable change of τopen. Since gating continued to operate at E K , i.e., in the absence of K+ permeation through the pore, K+ driving force cannot be causally involved in gating. Rather the driving force acts to modulate the gating process similar to Rb+ whose interference with an externally located binding site stabilizes the open state. In K+ (ir) and K+ (ACh) channels, the open state is essentially independent on driving force meaning that their gating apparatus does not sense the electrochemical K+ gradient. Thus, K+ (ATP) channels differ in an important functional aspect which may be tentatively explained by a structural peculiarity of their gating apparatus. Received: 24 March 1997/Revised: 24 April 1998  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号