全文获取类型
收费全文 | 107篇 |
免费 | 13篇 |
国内免费 | 7篇 |
专业分类
127篇 |
出版年
2023年 | 4篇 |
2022年 | 2篇 |
2021年 | 3篇 |
2020年 | 4篇 |
2019年 | 6篇 |
2018年 | 3篇 |
2017年 | 6篇 |
2016年 | 6篇 |
2015年 | 2篇 |
2014年 | 5篇 |
2013年 | 10篇 |
2012年 | 7篇 |
2011年 | 5篇 |
2010年 | 1篇 |
2009年 | 4篇 |
2008年 | 7篇 |
2007年 | 4篇 |
2006年 | 6篇 |
2005年 | 8篇 |
2004年 | 4篇 |
2003年 | 3篇 |
2002年 | 2篇 |
2001年 | 1篇 |
1997年 | 1篇 |
1996年 | 3篇 |
1995年 | 2篇 |
1993年 | 1篇 |
1992年 | 1篇 |
1991年 | 4篇 |
1990年 | 3篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1986年 | 2篇 |
1985年 | 3篇 |
1984年 | 1篇 |
1983年 | 1篇 |
排序方式: 共有127条查询结果,搜索用时 46 毫秒
101.
Zhu Liu Wei Lu Ming Chen Zhirong Yang Min Lin 《World journal of microbiology & biotechnology》2006,22(7):681-686
Summary A highly glyphosate-tolerant bacterium strain HTG7 was isolated from glyphosate-polluted soil in north China, and identified as Halomonas variabilis. It was a Gram-negative motile rod giving convex colony. The strain HTG7 could tolerate up to 900 mM glyphosate in minimal medium. The 16S rDNA sequence was amplified by PCR using universal primers.
The region essential for glyphosate tolerance was localized to a 3.5-kb fragment from a cosmid library of HTG7. The DNA fragment consisted of one complete open reading frame (ORF) and one partial ORF. The partial ORF was homologous
to prephenate dehydrogenase of Pseudomonas
aeruginosa PA01. The complete ORF contained the tyrA and aroA genes. Only the 1.35-kb aroA encoding EPSP synthase conferred glyphosate tolerance, and complemented with E. coli
aroA mutant ER2799. E. coli JM109 harboring aroA grew well in Mops supplemented with 80 mM glyphosate. 相似文献
102.
新型柱前衍生试剂分析草甘膦的高效液相色谱研究 总被引:1,自引:0,他引:1
以2,5-二甲氧基苯磺酰氯(DMOSC)为柱前衍生化试剂,建立了柱前衍生草甘膦的紫外检测反相高效液相色谱法,并优化了衍生化条件,得最佳条件:衍生温度35℃,时间15 min,pH 10.0,草甘膦与DMOSC的摩尔比为1∶6。HPLC分析条件:采用Kromasil C18柱,流速1.0 mL/min,柱温30℃,检测波长220 nm,流动相为甲醇-乙腈-磷酸盐缓冲溶液(0.02 mol/L、pH 5.5),三者的体积比为15∶5∶80。结果表明:草甘膦质量浓度在5~100μg/mL范围内线性关系良好,相关系数为0.996 2,检测限为0.067μg/mL。实验表明该方法反应条件温和,灵敏度高,衍生产物稳定。 相似文献
103.
Summary The stability and expression of amplified 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) genes was examined in glyphosate resistant tobacco cells grown in glyphosate-free medium, and in plantlets regenerated from resistant cells. Amplified DNA was maintained in resistant cells grown in the absence of glyphosate for three years. Amplified EPSPS genes were retained in regenerated plantlets at levels comparable to those observed in the resistant cells, and EPSPS mRNA was overexpressed (compared to unselected plantlets). However, glyphosate resistance in cell lines grown in glyphosate-free medium declined 7-fold, and in regenerated plantlets approximately 20-fold, compared to resistant cells maintained under glyphosate selection. In plantlets, reduced resistance correlated with lower levels of EPSPS mRNA. Plantlets regenerated from resistant cells exhibited morphological variation, and had an approximate doubling of their nuclear genome size. 相似文献
104.
Stalman M Koskamp AM Luderer R Vernooy JH Wind JC Wullems GJ Croes AF 《Journal of plant physiology》2003,160(6):607-614
Cell cultures of Morinda citrifolia L. are capable of accumulating substantial amounts of anthraquinones. Chorismate formed by the shikimate pathway is an important precursor of these secondary metabolites. Isochorismate synthase (EC 5.4.99.6), the enzyme that channels chorismate into the direction of the anthraquinones, is involved in the regulation of anthraquinone biosynthesis. Other enzymes of the shikimate pathway such as deoxy-D-arabino-heptulosonate 7-phosphate synthase (EC 4.1.2.15) and chorismate mutase (EC 5.4.99.5) do not play a regulatory role in the process. The accumulation of anthraquinones is correlated with isochorismate synthase activity under a variety of conditions, which indicates that under most circumstances the concentration of the branchpoint metabolite chorismate is not a rate-limiting factor. Anthraquinone biosynthesis in Morinda is strongly inhibited by 2,4-D, but much less by NAA. Both auxins inhibit the activity of isochorismate synthase proportionally to the concomitant reduction in the amount of anthraquinone accumulated. However, the correlation between enzyme activity and rate of biosynthesis is less clear when the activity of the enzyme is very high. In this case, a limiting concentration of precursor may determine the extent of anthraquinone accumulation. Partial inhibition of chorismate biosynthesis by glyphosate leads to less anthraquinone accumulation, but also to a reduction in ICS activity. The complexity of the interference of glyphosate with anthraquinone biosynthesis is illustrated by the effect of the inhibitor in cell cultures of the related species Rubia tinctorum L. in these cells, glyphosate leads to an increase in anthraquinone content and a concomitant rise in ICS activity. All data indicate that the main point of regulation in anthraquinone biosynthesis is located at the entrance of the specific secondary route. 相似文献
105.
Satheesh Natarajan Stanislav Stuchlík Martina Kukučková Veronika Renczésová Silvia Vávrová Zuzana Bargárová Roland Pálffy Peter Celec Marián Mačor Ján Turňa 《Biologia》2007,62(3):265-269
The enzyme CP4 5-enolpyruvyl shikimate-3-phosphate synthase (EPSPS; EC 2.5.1.19) from Agrobacterium tumefaciens CP4, encoded by the aroA gene, has been used for the construction of genetically modified crops resistant to total herbicide glyphosate. During the
study of possible horizontal gene transfer of aroA CP4 gene from genetically modified food in gastrointestinal tract to bacterial community living in the animal gut, we have
discovered and characterized truncated form of aroA CP4 within the cloning experiments in Escherichia coli. We have compared properties of the recombinant E. coli strains with both CP4 EPSPS enzyme forms. 相似文献
106.
107.
We have previously demonstrated that the administration of low doses of dimethoate, glyphosate and zineb to rats (i.p. 1/250 LD50, three times a week for 5 weeks) provokes severe oxidative stress (OS) in specific brain regions: substantia nigra, cortex and hippocampus. These effects were also observed in plasma. Lipoic acid (LA) is considered an “ideal antioxidant” due to its ability to scavenge reactive species, reset antioxidant levels and cross the blood–brain barrier. To investigate its protective effect we administered LA (i.p. 25, 50 and 100 mg/kg) simultaneously with the pesticide mixture (PM) for 5 weeks. After suppression of PM administration, we evaluated the restorative effect of LA for a further 5 weeks. LA prevented OS and the production of nitrites + nitrates [NOx] caused by PM in a dose-dependent manner. The PM-induced decrease in reduced glutathione and α-tocopherol levels in all brain regions was completely restored by LA at both high doses. PM administration also caused an increase in prostaglandins E2 and F2α in brain that was reduced by LA in a dose-dependent fashion. Taking into account the relationship between OS, inflammation and apoptosis, we measured caspase and calpain activity. Only milli- and micro-calpain isoforms were increased in the PM-treated group and LA reduced the activities to basal levels. We also demonstrated that interrupting PM administration is not enough to restore the levels of all the parameters measured and that LA is necessary to achieve basal status. In our experimental model LA displayed a protective role against pesticide-induced damage, suggesting that LA administration is a promising therapeutic strategy to cope with disorders suspected to be caused by OS generators, especially in brain. 相似文献
108.
Biological control of alligator weed Alternanthera philoxeroides (Mart.) Griseb. has been successful in limiting growth in water in areas with mild or warm winters, but not on land. Until recently, herbicides have had very limited short term and no long term effectiveness. Several herbicides that now provide better control include: glyphosate over water, and metsulfuron and dichlobenil on land and in shallow water. The latter two are limited by lack of selectivity, contamination of water, and cost. Mechanical or manual control has provided local eradication of the weed at a few locations where infestations were small. Alligator weed is still spreading with new outbreaks on New South Wales, Australia (NSW) coastal beach areas and coastal river systems, and on inland waterbodies. Its use as a cultivated vegetable by some ethnic communities has resulted in many new locations in all eastern Australia states: Queensland to Tasmania. It is predicted that it will spread throughout much of coastal and inland southern Australia. The difficulties with management of this weed indicate that every effort should be made to prevent further invasion of wetlands and, in particular, its introduction to Africa, where it is predicted that all wetlands could support destructive levels of alligator weed growth. 相似文献
109.
Aldo‐keto reductase enzymes detoxify glyphosate and improve herbicide resistance in plants 下载免费PDF全文
Ramu S. Vemanna Amaranatha Reddy Vennapusa Murugesh Easwaran Babitha K. Chandrashekar Hanumantha Rao Kirankumar Ghanti Chinta Sudhakar Kirankumar S. Mysore Udayakumar Makarla 《Plant biotechnology journal》2017,15(7):794-804
In recent years, concerns about the use of glyphosate‐resistant crops have increased because of glyphosate residual levels in plants and development of herbicide‐resistant weeds. In spite of identifying glyphosate‐detoxifying genes from microorganisms, the plant mechanism to detoxify glyphosate has not been studied. We characterized an aldo‐keto reductase gene from Pseudomonas (PsAKR1) and rice (OsAKR1) and showed, by docking studies, both PsAKR1 and OsAKR1 can efficiently bind to glyphosate. Silencing AKR1 homologues in rice and Nicotiana benthamiana or mutation of AKR1 in yeast and Arabidopsis showed increased sensitivity to glyphosate. External application of AKR proteins rescued glyphosate‐mediated cucumber seedling growth inhibition. Regeneration of tobacco transgenic lines expressing PsAKR1 or OsAKRI on glyphosate suggests that AKR can be used as selectable marker to develop transgenic crops. PsAKR1‐ or OsAKRI‐expressing tobacco and rice transgenic plants showed improved tolerance to glyphosate with reduced accumulation of shikimic acid without affecting the normal photosynthetic rates. These results suggested that AKR1 when overexpressed detoxifies glyphosate in planta. 相似文献
110.
The side effects of glyphosate on the soil microflora were monitored by applying a range of glyphosate concentrations (0,
2, 20, and 200 μg g−1 herbicide) to incubated soil samples, and following changes in various microbial groups over 27 days. Bacterial propagule
numbers were temporarily enhanced by 20 μg g−1 and 200 μg g−1 glyphosate, while actinomycete and fungal propagule numbers were unaffected by glyphosate. The frequency of three fungal
species on organic particles in soil was temporarily enhanced by 200 μg g−1 glyphosate, while one was inhibited. One species was temporily enhanced on mineral particles. However, many of these fungi
were inhibited by 200 μg g−1 glyphosate in pure culture. There was little agreement between species responses to glyphosate in incubated soil samples
and in pure culture. 相似文献