首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   191篇
  免费   7篇
  国内免费   5篇
  203篇
  2023年   4篇
  2022年   3篇
  2021年   7篇
  2020年   3篇
  2019年   3篇
  2018年   5篇
  2017年   6篇
  2016年   4篇
  2015年   12篇
  2014年   17篇
  2013年   24篇
  2012年   8篇
  2011年   8篇
  2010年   6篇
  2009年   11篇
  2008年   20篇
  2007年   7篇
  2006年   8篇
  2005年   9篇
  2004年   6篇
  2003年   7篇
  2002年   6篇
  2001年   4篇
  2000年   3篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有203条查询结果,搜索用时 15 毫秒
11.
The environmental carcinogen glycidaldehyde (GDA) and therapeutic chloroethylnitrosoureas (CNUs) can form hydroxymethyl etheno and ring-saturated ethano bases, respectively. The mutagenic potential of these adducts relies on their miscoding properties and repair efficiency. In this work, the ability of human thymine-DNA glycosylase (TDG) to excise 8-(hydroxymethyl)-3,N(4)-ethenocytosine (8-hm-varepsilonC) and 3,N(4)-ethanocytosine (EC) was investigated and compared with varepsilonC, a known substrate for TDG. When tested using defined oligonucleotides containing a single adduct, TDG is able to excise 8-hm-varepsilonC but not EC. The 8-hm-varepsilonC activity mainly depends on guanine pairing with the adduct. TDG removes 8-hm-varepsilonC less efficiently than varepsilonC but its activity can be significantly enhanced by human AP endonuclease 1 (APE1), a downstream enzyme in the base excision repair. TDG did not show any detectable activity toward EC when placed in various neighboring sequences, including the 5'-CpG site. Molecular modeling revealed a possible steric clash between the non-planar EC exocyclic ring and residue Asn 191 within the TDG active site, which could account for the lack of TDG activity toward EC. TDG was not active against the bulkier exocyclic adduct 3,N(4)-benzethenocytosine, nor the two adenine derivatives with same modifications as the cytosine derivatives, 7-hm-varepsilonA and EA. These findings expand the TDG substrate range and aid in understanding the structural requirements for TDG substrate specificity.  相似文献   
12.
Longerich S  Meira L  Shah D  Samson LD  Storb U 《DNA Repair》2007,6(12):1764-1773
Somatic hypermutation (SHM) and class switch recombination (CSR) of immunoglobulin (Ig) genes require the cytosine deaminase AID, which deaminates cytosine to uracil in Ig gene DNA. Paradoxically, proteins involved normally in error-free base excision repair and mismatch repair, seem to be co-opted to facilitate SHM and CSR, by recruiting error-prone translesion polymerases to DNA sequences containing deoxy-uracils created by AID. Major evidence supports at least one mechanism whereby the uracil glycosylase Ung removes AID-generated uracils creating abasic sites which may be used either as uninformative templates for DNA synthesis, or processed to nicks and gaps that prime error-prone DNA synthesis. We investigated the possibility that deamination at adenines also initiates SHM. Adenosine deamination would generate hypoxanthine (Hx), a substrate for the alkyladenine DNA glycosylase (Aag). Aag would generate abasic sites which then are subject to error-prone repair as above for AID-deaminated cytosine processed by Ung. If the action of an adenosine deaminase followed by Aag were responsible for significant numbers of mutations at A, we would find a preponderance of A:T>G:C transition mutations during SHM in an Aag deleted background. However, this was not observed and we found that the frequencies of SHM and CSR were not significantly altered in Aag-/- mice. Paradoxically, we found that Aag is expressed in B lymphocytes undergoing SHM and CSR and that its activity is upregulated in activated B cells. Moreover, we did find a statistically significant, albeit low increase of T:A>C:G transition mutations in Aag-/- animals, suggesting that Aag may be involved in creating the SHM A>T bias seen in wild type mice.  相似文献   
13.
《Reproductive biology》2022,22(3):100679
It has been reported that oxidative stress and chronic inflammation may be involved in the pathogenesis of polycystic ovary syndrome (PCOS). 8-oxoguanine DNA glycosylase (OGG1) is the main glycosylase that catalyzes the excision of DNA oxidation products. In this study, we investigated the role and potential mechanisms of OGG1 in the development of PCOS. We first analyzed OGG1 levels in serum and follicular fluid (FF) of PCOS patients, and significantly elevated OGG1 levels were noted in PCOS patients. We similarly observed a significant upregulation of OGG1 expression levels in ovarian tissue of the dehydroepiandrosterone (DHEA)-induced PCOS rat model. In addition, increased apoptosis and increased production of reactive oxygen species (ROS) were observed after the addition of OGG1-specific inhibitor (TH5487) in human granulosa-like tumor cell line (KGN) cells following a concentration gradient, along with a significant decrease in mRNA levels of inflammatory factors such as CXCL2, IL-6, MCP1, IL-1β, and IL-18. Significant decreases in protein phosphorylation levels of P65 and IκBα were also observed in cells. In addition, we found a significant positive correlation between OGG1 and IL-6 expression levels in human and DHEA-induced PCOS rat models. In conclusion, our results suggest that OGG1 might be involved in the pathogenesis of PCOS by regulating the secretion of IL-6 through NF-κB signaling pathway, and there might be a balance between the inhibition of oxidative stress and the promotion of chronic inflammation by OGG1 on KGN cells.  相似文献   
14.
Increasing numbers of cancer patients survive and live longer than five years after therapy, but very often side effects of cancer treatment arise at same time. One of the side effects, chemotherapy-induced cognitive impairment (CICI), also called “chemobrain” or “chemofog” by patients, brings enormous challenges to cancer survivors following successful chemotherapeutic treatment. Decreased abilities of learning, memory, attention, executive function and processing speed in cancer survivors with CICI, are some of the challenges that greatly impair survivors' quality of life. The molecular mechanisms of CICI involve very complicated processes, which have been the subject of investigation over the past decades. Many mechanistic candidates have been studied including disruption of the blood-brain barrier (BBB), DNA damage, telomere shortening, oxidative stress and associated inflammatory response, gene polymorphism of neural repair, altered neurotransmission, and hormone changes. Oxidative stress is considered as a vital mechanism, since over 50% of FDA-approved anti-cancer drugs can generate reactive oxygen species (ROS) or reactive nitrogen species (RNS), which lead to neuronal death. In this review paper, we discuss these important candidate mechanisms, in particular oxidative stress and the cytokine, TNF-alpha and their potential roles in CICI.  相似文献   
15.
Uracil-DNA glycosylase (UDG; EC 3.2.2.-) removes uracil from DNA to initiate DNA base excision repair. Since hydrolytic deamination of cytosine to uracil is one of the most frequent DNA-damaging events in all cells, UDG is an essential enzyme for maintaining the integrity of genomic information. For the first time, we report the crystal structure of a family 4 UDG from Thermus thermophilus HB8 (TthUDG) complexed with uracil, solved at 1.5 angstroms resolution. As opposed to UDG enzymes in its other families, TthUDG possesses a [4Fe-4S] cluster. This iron-sulfur cluster, which is distant from the active site, interacts with loop structures and has been suggested to be unessential to the activity but necessary for stabilizing the loop structures. In addition to the iron-sulfur cluster, salt-bridges and ion pairs on the molecular surface and the presence of proline on loops and turns is thought to contribute to the enzyme's thermostability. Despite very low levels of sequence identity with Escherichia coli and human UDGs (family 1) and E.coli G:T/U mismatch-specific DNA glycosylase (MUG) (family 2), the topology and order of secondary structures of TthUDG are similar to those of these distant relatives. Furthermore, the coordinates of the core structure formed by beta-strands are almost the same. Positive charge is distributed over the active-site groove, where TthUDG would bind DNA strands, as do UDG enzymes in other families. TthUDG recognizes uracil specifically in the same manner as does human UDG (family 1), rather than guanine in the complementary strand DNA, as does E.coli MUG (family 2). These results suggest that the mechanism by which family 4 UDGs remove uracils from DNA is similar to that of family 1 enzymes.  相似文献   
16.
Cellular genomes suffer extensive damage from exogenous agents and reactive oxygen species formed during normal metabolism. The MutT homologs (MutT/MTH) remove oxidized nucleotide precursors so that they cannot be incorporated into DNA during replication. Among many repair pathways, the base excision repair (BER) pathway is the most important cellular protection mechanism responding to oxidative DNA damage. The 8-oxoG glycosylases (Fpg or MutM/OGG) and the MutY homologs (MutY/MYH) glycosylases along with MutT/MTH protect cells from the mutagenic effects of 8-oxoG, the most stable and deleterious product known caused by oxidative damage to DNA. The key enzymes in the BER process are DNA glycosylases, which remove different damaged bases by cleavage of the N-glycosylic bonds between the bases and the deoxyribose moieties of the nucleotide residues. Biochemical and structural studies have demonstrated the substrate recognition and reaction mechanism of BER enzymes. Cocrystal structures of strated the substrate recognition and reaction mechanism of BER enzymes. Cocrystal structures of several glycosylases show that the substrate base flips out of the sharply bent DNA helix and the minor groove is widened to be accessed by the glycosylases. To complete the repair after glycosylase action, the apurinic/apyrimidinic (AP) site is further processed by an incision step, DNA synthesis, an excision step, and DNA ligation through two alternative pathways. The short-patch BER (1-nucleotide patch size) and long-patch BER (2–6-nucleotide patch size) pathways need AP endonuclease to generate a 3′ hydroxyl group but require different sets of enzymes for DNA synthesis and ligation. Protein-protein interactions have been reported among the enzymes involved in BER. It is possible that the successive players in the repair pathway are assembled in a complex to perform concerted actions. The BER pathways are proposed to protect cells and organisms from mutagenesis and carcinogenesis.  相似文献   
17.
Hypoxia-associated, acutely reduced blood oxygenation can compromise energy metabolism, alter oxidant/antioxidant balance and damage cellular components, including DNA. We show in vivo, in the rat brain that respiratory hypoxia leads to formation of the oxidative DNA lesion, 8-hydroxy-2'-deoxyguanosine (oh8dG), a biomarker for oxidative DNA damage and to increased expression of a DNA repair enzyme involved in protection of the genome from the mutagenic consequences of oh8dG. The enzyme is a homolog of the Escherichia coli MutY DNA glycosylase (MYH), which excises adenine residues misincorporated opposite the oxidized base, oh8dG. We have cloned a full-length rat MYH (rMYH) cDNA, which encodes 516 amino acids, and by in situ hybridization analysis obtained expression patterns of rMYH mRNA in hippocampal, cortical and cerebellar regions. Ensuing hypoxia, mitochondrial DNA damage was induced and rMYH expression strongly elevated. This is the first evidence for a regulated expression of a DNA repair enzyme in the context of respiratory hypoxia. Our findings support the premise that oxidative DNA damage is repaired in neurons and the possibility that the hypoxia-induced expression of a DNA repair enzyme in the brain represents an adaptive mechanism for protection of neuronal DNA from injurious consequences of disrupted energy metabolism and oxidant/antioxidant homeostasis.  相似文献   
18.
Large dsDNA-containing chlorella viruses encode a pyrimidine dimer-specific glycosylase (PDG) that initiates repair of UV-induced pyrimidine dimers. The PDG enzyme is a homologue of the bacteriophage T4-encoded endonuclease V. The pdg gene was cloned and sequenced from 42 chlorella viruses isolated over a 12-year period from diverse geographic regions. Surprisingly, the pdg gene from 15 of these 42 viruses contain a 98-nucleotide intron that is 100% conserved among the viruses and another 4 viruses contain an 81-nucleotide intron, in the same position, that is nearly 100% identical (one virus differed by one base). In contrast, the nucleotides in the pdg coding regions (exons) from the intron-containing viruses are 84 to 100% identical. The introns in the pdg gene have 5′-AG/GTATGT and 3′-TTGCAG/AA splice site sequences which are characteristic of nuclear-located, spliceosomal processed pre-mRNA introns. The 100% identity of the 98-nucleotide intron sequence in the 15 viruses and the near-perfect identity of an 81-nucleotide intron sequence in another 4 viruses imply strong selective pressure to maintain the DNA sequence of the intron when it is in the pdg gene. However, the ability of intron-plus and intron-minus viruses to repair UV-damaged DNA in the dark was nearly identical. These findings contradict the widely accepted dogma that intron sequences are more variable than exon sequences. Received: 13 May 1999 / Accepted: 20 August 1999  相似文献   
19.
Cytosine methylation at CpG dinucleotides is a central component of epigenetic regulation in vertebrates, and the base excision repair (BER) pathway is important for maintaining both the genetic stability and the methylation status of CpG sites. This perspective focuses on two enzymes that are of particular importance for the genetic and epigenetic integrity of CpG sites, methyl binding domain 4 (MBD4) and thymine DNA glycosylase (TDG). We discuss their capacity for countering C to T mutations at CpG sites, by initiating base excision repair of G·T mismatches generated by deamination of 5-methylcytosine (5mC). We also consider their role in active DNA demethylation, including pathways that are initiated by oxidation and/or deamination of 5mC.  相似文献   
20.
CUX1 and CUX2 proteins are characterized by the presence of three highly similar regions called Cut repeats 1, 2, and 3. Although CUX1 is ubiquitously expressed, CUX2 plays an important role in the specification of neuronal cells and continues to be expressed in postmitotic neurons. Cut repeats from the CUX1 protein were recently shown to stimulate 8-oxoguanine DNA glycosylase 1 (OGG1), an enzyme that removes oxidized purines from DNA and introduces a single strand break through its apurinic/apyrimidinic lyase activity to initiate base excision repair. Here, we investigated whether CUX2 plays a similar role in the repair of oxidative DNA damage. Cux2 knockdown in embryonic cortical neurons increased levels of oxidative DNA damage. In vitro, Cut repeats from CUX2 increased the binding of OGG1 to 7,8-dihydro-8-oxoguanine-containing DNA and stimulated both the glycosylase and apurinic/apyrimidinic lyase activities of OGG1. Genetic inactivation in mouse embryo fibroblasts or CUX2 knockdown in HCC38 cells delayed DNA repair and increased DNA damage. Conversely, ectopic expression of Cut repeats from CUX2 accelerated DNA repair and reduced levels of oxidative DNA damage. These results demonstrate that CUX2 functions as an accessory factor that stimulates the repair of oxidative DNA damage. Neurons produce a high level of reactive oxygen species because of their dependence on aerobic oxidation of glucose as their source of energy. Our results suggest that the persistent expression of CUX2 in postmitotic neurons contributes to the maintenance of genome integrity through its stimulation of oxidative DNA damage repair.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号