首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   274篇
  免费   18篇
  国内免费   8篇
  2023年   6篇
  2022年   2篇
  2021年   4篇
  2020年   3篇
  2019年   5篇
  2018年   6篇
  2017年   7篇
  2016年   11篇
  2015年   3篇
  2014年   9篇
  2013年   27篇
  2012年   9篇
  2011年   16篇
  2010年   9篇
  2009年   11篇
  2008年   18篇
  2007年   14篇
  2006年   14篇
  2005年   14篇
  2004年   15篇
  2003年   9篇
  2002年   9篇
  2001年   7篇
  2000年   4篇
  1999年   5篇
  1998年   5篇
  1997年   6篇
  1996年   6篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   5篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   4篇
  1985年   4篇
  1984年   6篇
  1983年   2篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
  1976年   4篇
  1974年   3篇
排序方式: 共有300条查询结果,搜索用时 203 毫秒
91.
The tyrosine residue Y198 is known to support a nucleophilic water molecule with the general base residue, D263, in the reducing-end xylose-releasing exo-oligoxylanase (Rex). A mutation in the tyrosine residue changing it into phenylalanine caused a drastic decrease in the hydrolytic activity and a small increase in the F(-) releasing activity from alpha-xylobiosyl fluoride in the presence of xylose. In contrast, mutations at D263 resulted in the decreased F(-) releasing activity. As a result of the high F(-) releasing activity and low hydrolytic activity, Y198F of Rex accumulates a large amount of product during the glycosynthase reaction. We propose a novel method for producing a glycosynthase from an inverting glycoside hydrolase by mutating a residue that holds the nucleophilic water molecule with the general base residue while keeping the general base residue intact.  相似文献   
92.
Morphogenesis of the rod-shaped Escherichia coli is determined by controlled growth of an exoskeleton made of murein (peptidoglycan). Recent insights in the growth strategy of the stress-bearing murein sacculus has contributed to our understanding of how the required concerted action of murein polymerizing and hydrolyzing enzymes is achieved. The proteins involved are coordinated by the formation of multienzyme complexes. In this review, we summarize the recent results on murein structure and metabolism. On the basis of these findings, we present a model that explains maintenance of the specific rod shape of E. coli.  相似文献   
93.
Sphingolipids are a major component of plant plasma membranes and endomembranes, and mediate a diverse range of biological processes. Study of the highly glycosylated glycosyl inositol phosphorylceramide (GIPC) sphingolipids has been slow as a result of challenges associated with the extractability of GIPCs, and their functions in the plant remain poorly characterized. We recently discovered an Arabidopsis GIPC glucuronosyltransferase, INOSITOL PHOSPHORYLCERAMIDE GLUCURONOSYLTRANSFERASE 1 (IPUT1), which is the first enzyme in the GIPC glycosylation pathway. Plants homozygous for the iput1 loss‐of‐function mutation were unobtainable, and so the developmental effects of reduced GIPC glucuronosylation could not be analyzed in planta. Using a pollen‐specific rescue construct, we have here isolated homozygous iput1 mutants. The iput1 mutants show severe dwarfism, compromised pollen tube guidance, and constitutive activation of salicyclic acid‐mediated defense pathways. The mutants also possess reduced GIPCs, increased ceramides, and an increased incorporation of short‐chain fatty acids and dihydroxylated bases into inositol phosphorylceramides and GIPCs. The assignment of a direct role for GIPC glycan head groups in the impaired processes in iput1 mutants is complicated by the vast compensatory changes in the sphingolipidome; however, our results reveal that the glycosylation steps of GIPC biosynthesis are important regulated components of sphingolipid metabolism. This study corroborates previously suggested roles for GIPC glycans in plant growth and defense, suggests important roles for them in reproduction and demonstrates that the entire sphingolipidome is sensitive to their status.  相似文献   
94.
Bacteria species involved in degradation of cellulosic substrates produce a variety of enzymes for processing related compounds along the hydrolytic pathway. Paenibacillus polymyxa encodes two homologous beta-glucosidases, BglA and BglB, presenting different quaternary structures and substrate specificities. We previously reported the 3D-structure of BglA, which is highly specific against cellobiose. Here, we present structural analysis of BglB, a monomeric enzyme that acts as an exo-beta-glucosidase hydrolyzing cellobiose and cellodextrins of higher degree of polymerization. The crystal structure of BglB shows that several polar residues narrow the active site pocket and contour additional subsites. The structure of the BglB-cellotetraose complex confirms these subsites, revealing the substrate-binding mode, and shows the oligosaccharide-enzyme recognition pattern in detail. Comparison between BglA and BglB crystal structures suggests that oligomerization in BglA can assist in fine-tuning the specificity of the active centre by modulating the loops surrounding the cavity. We have solved the crystal structure of BglB with bound thiocellobiose, a competitive inhibitor, which together with the BglB-cellotetraose complex delineate the general features of the aglycon site. The detailed characterization of the atomic interactions at the aglycon site show a recognition pattern common to all bacterial beta-glucosidases, and presents some differences with the aglycon site in plant beta-glycosidases essentially by means of a different orientation of the basal Trp. The crystal structures of of BglB with a covalently bound inhibitor (derived from 2-fluoroglucoside) and glucose (produced by hydrolysis of the substrate in the crystal), provide additional pictures of the binding events and the intermediates formed during the reaction. Altogether, this information can assist in the understanding of subtle differences of the enzyme mechanism and substrate recognition within this family of enzymes, and consequently it can help in the development of new enzymes with improved activity or specificity.  相似文献   
95.
Most bacteriophages encode two types of cell wall lytic proteins: endolysins (lysins) and virion-associated peptidoglycan hydrolases. Both enzymes have the ability to degrade the peptidoglycan of Gram-positive bacteria resulting in cell lysis when they are applied externally. Bacteriophage lytic proteins have a demonstrated potential in treating animal models of infectious diseases. There has also been an increase in the study of these lytic proteins for their application in areas such as food safety, pathogen detection/diagnosis, surfaces disinfection, vaccine development and nanotechnology. This review summarizes the more recent developments, outlines the full potential of these proteins to develop new biotechnological tools and discusses the feasibility of these proposals.  相似文献   
96.
An interesting approach for the chemo-enzymatic synthesis of carbohydrates is the use of glycosynthases, a class of mutant glycosidases derived from β-glycoside hydrolases obtained by replacement of the active site nucleophile with a non-nucleophilic residue. However, the scarcity of α-glycosynthases has so far hampered access to the synthesis of a large class of oligosaccharides of biotechnological interest. We review here a new glycosynthetic methodology for the production of two retaining α-fucosynthases and an α-galactosynthase exploiting β-glycosyl azide derivatives. The general applicability of this approach, which opens new perspectives in the use of azide derivatives for the production of novel α-glycosynthases, is discussed.  相似文献   
97.
Lentinula edodes (Berk.) Pegler is found in nature on dead broadleaf trees, but it is commercially produced on different substrates. The question of adaptation to different lignocellulosic substrates was addressed by measuring enzyme activities produced by six strains that were cultivated on wheat straw and that were able to produce sporophores. Despite quantitative variations, each strain of L. edodes had similar patterns of enzyme secretion into the wheat straw log matrix. Two peaks of carbohydrase activities were observed, the first relating to the early mycelial growth during the first days after spawning and the second during sporophore extension. Laccase activity in the early stage of colonization was related to the degradation of soluble phenolic compounds present in wheat straw. Manganese peroxidase activity was associated with mycelia th. The strains with the earlier production and higher yield were able to hydrolyse and utilize straw cell wall components soon aft er inoculation, and developed high metabolic activities.  相似文献   
98.
N-Troc-protected (Troc = 2,2,2-trichloroethoxycarbonyl) glucosamine and galactosamine glycosyl donors (1-O-acetyl sugar, bromo sugar, and thioglycoside) were compared with the corresponding N-Phth-protected derivatives in glycosylations of 2-(trimethylsilyl)ethanol, 2-bromoethanol, methyl 3-mercaptopropionate, N-Fmoc-protected serine, and 2-(trimethylsilyl)ethyl . The N-Troc-protected donors gave pure β-glycosides in somewhat higher yields than the N-Phth-protected counterparts. The N-Troc protecting group can be removed by reduction with zinc, which allows selective N-deprotection in oligosaccharides containing both N-Troc and N-Phth groups.  相似文献   
99.
海枣曲霉木聚糖酶Ⅲ经PAGE和SDS-PAGE后用Schiff’s试剂染色证明为糖蛋白。经硅胶薄层层析和毛细管气相色谱测定,每分子酶约含4个葡萄糖和1个甘露糖残基。 木聚糖酶Ⅲ经β-消除反应后在241nm处出现一个新的吸收峰。在N_2保护下用含NaBH_4的NaOH溶液处理后,其Ser和Thr减少,相对应丙氨酸增加,并出现α-氨基丁酸。估测酶分户中存在约3个O-糖苷键,糖残墓通过O-糖苷键连接于肽链中丝氨酸或苏氨酸上。  相似文献   
100.
Particulate fractions (10,000g) from pupae of Stomoxys calcitrans transfer [14C]-mannose from GDP-[14C]-mannose to dolichol monophosphate and proteins. Production of the mannosyl lipid was inhibited by Mn2+, UDP, GMP, GDP, and EDTA. The insect growth regulator diflubenzuron had no effect on mannosyl transferase activity. Dolichol monophosphate and Mg2+ stimulated mannosyl transferase activity. The mannosyl lipid product was identified as mannosyl-phosphoryl-dolichol (Man-P-Dol). The apparent Km and Vmax values for the formation of Man-P-Dol using GDP-[14C]-Man while holding dolichol phosphate constant were 2.4 ± 0.9 μM and 9.4 ± 2.3 pmol Man-P-Dol·min?1·mg?1 protein, respectively. The apparent Km and Vmax values using dólichol phosphate while holding GDP-Man constant were 2.2 ± 1.2 μM and 18.5 ± 1.7 pmol Man-P-Dol·min?1·mg?1 protein.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号