首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   274篇
  免费   18篇
  国内免费   8篇
  2023年   6篇
  2022年   2篇
  2021年   4篇
  2020年   3篇
  2019年   5篇
  2018年   6篇
  2017年   7篇
  2016年   11篇
  2015年   3篇
  2014年   9篇
  2013年   27篇
  2012年   9篇
  2011年   16篇
  2010年   9篇
  2009年   11篇
  2008年   18篇
  2007年   14篇
  2006年   14篇
  2005年   14篇
  2004年   15篇
  2003年   9篇
  2002年   9篇
  2001年   7篇
  2000年   4篇
  1999年   5篇
  1998年   5篇
  1997年   6篇
  1996年   6篇
  1995年   3篇
  1994年   1篇
  1993年   2篇
  1992年   5篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1986年   4篇
  1985年   4篇
  1984年   6篇
  1983年   2篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
  1976年   4篇
  1974年   3篇
排序方式: 共有300条查询结果,搜索用时 67 毫秒
51.
Family 48 cellobiohydrolases are some of the most abundant glycoside hydrolases in nature. They are able to degrade cellulosic biomass and therefore serve as good enzyme candidates for biofuel production. Family 48 cellulases hydrolyze cellulose chains via a processive mechanism, and produce end products composed primarily of cellobiose as well as other cellooligomers (dp ≤ 4). The challenge of utilizing cellulases in biofuel production lies in their extremely slow turnover rate. A factor contributing to the low enzyme activity is suggested to be product binding to enzyme and the resulting performance inhibition. In this study, we quantitatively evaluated the product inhibitory effect of four family 48 glycoside hydrolases using molecular dynamics simulations and product expulsion free‐energy calculations. We also suggested a series of single mutants of the four family 48 glycoside hydrolases with theoretically reduced level of product inhibition. The theoretical calculations provide a guide for future experimental studies designed to produce mutant cellulases with enhanced activity. Proteins 2016; 84:295–304. © 2016 Wiley Periodicals, Inc.  相似文献   
52.
We used a proteomic analysis to identify cell wall proteins released from Sclerotinia sclerotiorum hyphal and sclerotial cell walls via a trifluoromethanesulfonic acid (TFMS) digestion. Cell walls from hyphae grown in Vogel's glucose medium (a synthetic medium lacking plant materials), from hyphae grown in potato dextrose broth and from sclerotia produced on potato dextrose agar were used in the analysis. Under the conditions used, TFMS digests the glycosidic linkages in the cell walls to release intact cell wall proteins. The analysis identified 24 glycosylphosphatidylinositol (GPI)‐anchored cell wall proteins and 30 non‐GPI‐anchored cell wall proteins. We found that the cell walls contained an array of cell wall biosynthetic enzymes similar to those found in the cell walls of other fungi. When comparing the proteins in hyphal cell walls grown in potato dextrose broth with those in hyphal cell walls grown in the absence of plant material, it was found that a core group of cell wall biosynthetic proteins and some proteins associated with pathogenicity (secreted cellulases, pectin lyases, glucosidases and proteases) were expressed in both types of hyphae. The hyphae grown in potato dextrose broth contained a number of additional proteins (laccases, oxalate decarboxylase, peroxidase, polysaccharide deacetylase and several proteins unique to Sclerotinia and Botrytis) that might facilitate growth on a plant host. A comparison of the proteins in the sclerotial cell wall with the proteins in the hyphal cell wall demonstrated that sclerotia formation is not marked by a major shift in the composition of cell wall protein. We found that the S. sclerotiorum cell walls contained 11 cell wall proteins that were encoded only in Sclerotinia and Botrytis genomes.  相似文献   
53.
54.
Polyethylene glycol (PEG)-induced water stress adversely affected the germination and seedling growth of Sonalika and WL2265 cultivars of wheat (Triticum aestivum L.). Application of a mixture of long-chain aliphatic alcohols having the composition C-24 Tetracosanol (10%), C-26 Hexacosanol (16%), C-28 Octacosanol (15%), C-30 Tricontanol (30%), C-32 Dotriacontanol (15%) and C-34 Tetratriacontanol (14%), partially ameliorated these effects and promoted both percent germination and seedling growth. Application also stimulated the activities of the hydrolases - and -amylase and acid invertase, so increasing free sugar accumulation. A role for long chain aliphatic alcohols in the regulation of carbohydrate metabolism is suggested. The alleviation of moisture stress by application of this mixture suggest that long chain aliphatic alcohols may be most effective at low water potentials.  相似文献   
55.
Suspension-cultured sycamore cells (Acer pseudoplatanus) were disrupted in aqueous K-Pi buffer and the insoluble residue (the cell wall) purified by extraction with organic solvents and air-dried (dry cell walls) or by washing with aqueous sodium dodecyl sulphate and stored frozen (wet cell walls). Polysaccharides solubilized from the purified wet and dry cell walls by enzymatic digestion and chemical extraction were isolated and their glycosyl-residue compositions compared. No significant differences were found in the types or yields of the polysaccharides solubilized by enzymatic digestion and chemical extraction of the wet and dry cell wall preparations. Moreover, the glycosyl-residue compositions of the so-called ‘-cellulose’ fraction that remains after extraction of the wet and dry cell wall preparations with alkali was indistinguishable from the glycosyl-residue compositions of the walls prior to extraction.  相似文献   
56.
Exploitation of enzymes in biocatalytic processes provides scope both in the synthesis and degradation of molecules. Enzymes have power not only in their catalytic efficiency, but their chemoselectivity, regioselectivity, and stereoselectivity means the reactions they catalyze are precise and reproducible. Focusing on carbohydrate processing enzymes, this review covers advances in biocatalysis involving carbohydrates over the last 2–3 years. Given the notorious difficulties in the chemical synthesis of carbohydrates, the use of enzymes for synthesis has potential for significant impact in the future. The use of catabolic enzymes in the degradation of biomass, which can be exploited in the production of biofuels to provide a sustainable and greener source of energy, and the synthesis of molecules that have a range of applications including in the pharmaceutical and food industries will be explored.  相似文献   
57.
N-glycosylation is one of the major post-translational modifications of proteins in eukaryotes; however, the processing reactions of oligomannosidic N-glycan precursors leading to hybrid-type and finally complex-type N-glycans are not fully understood in plants. To investigate the role of Golgi alpha-mannosidase II (GMII) in the formation of complex N-glycans in plants, we identified a putative GMII from Arabidopsis thaliana (AtGMII; EC 3.2.1.114) and characterized the enzyme at a molecular level. The putative AtGMII cDNA was cloned, and its deduced amino acid sequence revealed a typical type II membrane protein of 1173 amino acids. A soluble recombinant form of the enzyme produced in insect cells was capable of processing different physiologically relevant hybrid N-glycans. Furthermore, a detailed N-glycan analysis of two AtGMII knockout mutants revealed the predominant presence of unprocessed hybrid N-glycans. These results provide evidence that AtGMII plays a central role in the formation of complex N-glycans in plants. Furthermore, conclusive evidence was obtained that alternative routes in the conversion of hybrid N-glycans to complex N-glycans exist in plants. Transient expression of N-terminal AtGMII fragments fused to a GFP reporter molecule demonstrated that the transmembrane domain and 10 amino acids from the cytoplasmic tail are sufficient to retain a reporter molecule in the Golgi apparatus and that lumenal sequences are not involved in the retention mechanism. A GFP fusion construct containing only the transmembrane domain was predominantly retained in the ER, a result that indicates the presence of a motif promoting ER export within the last 10 amino acids of the cytoplasmic tail of AtGMII.  相似文献   
58.
Patterns of scissile bond twisting have been found in crystal structures of glycoside hydrolases (GHs) that are complexed with substrates and inhibitors. To estimate the increased potential energy in the substrates that results from this twisting, we have plotted torsion angles for the scissile bonds on hybrid Quantum Mechanics::Molecular Mechanics energy surfaces. Eight such maps were constructed, including one for α-maltose and three for different forms of methyl α-acarviosinide to provide energies for twisting of α-(1,4) glycosidic bonds. Maps were also made for β-thiocellobiose and for three β-cellobiose conformers having different glycon ring shapes to model distortions of β-(1,4) glycosidic bonds. Different GH families twist scissile glycosidic bonds differently, increasing their potential energies from 0.5 to 9.5 kcal/mol. In general, the direction of twisting of the glycosidic bond away from the conformation of lowest intramolecular energy correlates with the position (syn or anti) of the proton donor with respect to the glycon’s ring oxygen atom. This correlation suggests that glycosidic bond distortion is important for the optimal orientation of one of the glycosidic oxygen lone pairs toward the enzyme’s proton donor.  相似文献   
59.
Pulmonary fibrosis is characterized by excessive deposition of extracellular matrix components in the alveolar space, which hampers normal respiration process. Pathophysiological enzymes, glycoprotein moieties and matrix degrading lysosomal hydrolases are key markers and play a crucial role in the progression of fibrosis. Bleomycin is an anti-neoplastic drug, used for the treatment of various types of cancers and induces pulmonary fibrosis due its deleterious side effect. Tea catechin epigallocatechin-3-gallate (EGCG) is known for its wide array of beneficial effects. The present study was intended to evaluate the beneficial efficacy of EGCG against bleomycin-induced glycoconjugates, lysosomal hydrolases and ultrastructural changes in the lungs of Wistar rats. Intratracheal instillation of bleomycin (6.5 U/kg body weight) to rats increased the activities of pathophysiological enzymes such as aspartate transaminase, alanine transaminase, lactate dehydrogenase and alkaline phosphatase, which were attenuated upon EGCG treatment. The increased level of hydroxyproline and histopathological parameters in bleomycin-induced rats were decreased upon EGCG treatment. Bleomycin-induced increase in the level of glycoconjugates was restored closer to normal levels on EGCG treatment. Furthermore, the increased activities of matrix degrading lysosomal enzymes in bleomycin-induced rats were reduced upon EGCG supplementation. Treatment with EGCG also attenuated bleomycin-induced ultrastructural changes as observed from transmission electron microscopy studies. The results of the present study put-forward EGCG as a potential anti-fibrotic agent due to its attenuating effect on potential fibrotic markers.  相似文献   
60.
The key molecular event underlying prion diseases is the conversion of the monomeric and α-helical cellular form of the prion protein (PrPC) to the disease-associated state, which is aggregated and rich in β-sheet (PrPSc). The molecular details associated with the conversion of PrPC into PrPSc are not fully understood. The prion protein is attached to the cell membrane via a GPI lipid anchor and evidence suggests that the lipid environment plays an important role in prion conversion and propagation. We have previously shown that the interaction of the prion protein with anionic lipid membranes induces β-sheet structure and promotes prion aggregation, whereas zwitterionic membranes stabilize the α-helical form of the protein. Here, we report on the interaction of recombinant sheep prion protein with planar lipid membranes in real-time, using dual polarization interferometry (DPI). Using this technique, the simultaneous evaluation of multiple physical properties of PrP layers on membranes was achieved. The deposition of prion on membranes of POPC and POPC/POPS mixtures was studied. The properties of the resulting protein layers were found to depend on the lipid composition of the membranes. Denser and thicker protein deposits formed on lipid membranes containing POPS compared to those formed on POPC. DPI thus provides a further insight on the organization of PrP at the surface of lipid membranes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号