首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   103篇
  免费   4篇
  国内免费   4篇
  111篇
  2023年   4篇
  2022年   6篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2016年   2篇
  2015年   3篇
  2014年   4篇
  2013年   3篇
  2012年   3篇
  2011年   8篇
  2010年   6篇
  2009年   4篇
  2008年   8篇
  2007年   7篇
  2006年   2篇
  2005年   4篇
  2004年   1篇
  2003年   4篇
  2002年   4篇
  2001年   4篇
  2000年   1篇
  1999年   4篇
  1998年   2篇
  1996年   6篇
  1995年   1篇
  1994年   4篇
  1990年   1篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1984年   3篇
  1977年   1篇
  1974年   1篇
排序方式: 共有111条查询结果,搜索用时 0 毫秒
91.
In order to better understand the role of cell surface glycolipids in T lymphocyte activation, heparin was used to simultaneously modulate the expression of glycolipids and the lytic capacity of lymphocytes activated by interleukin-2. Results presented here show that heparin added at the start of a 3 day culture inhibited the formation of lymphokine activated killer cells by up to 50%. Heparin also has a profound effect on the synthesis of glycolipids during this three day period. Asialo GM1, a useful cell surface marker for subsets of murine cytotoxic cells, is reduced in amount, as are the other two major neutral glycolipids lactosylceramide and asialo GM2. In addition, the synthesis of some gangliosides is affected by heparin treatment. Comparison of the glycosyltrasferase activities of untreated and heparin-treated cells shows that the activities of a 2–3-sialyltransferase and a 1–3 galactosyltransferase are inhibited dramatically, while a third enzyme, N-acetyl-galactosaminyltransferase is unaffected. The two heparin inhibitable enzymes bind to heparin affinity columns but the galactosaminyltransferase does not. These studies suggest that the proper regulation of the activities of specific glycosyltransferases may be important events in lymphocyte activation.  相似文献   
92.
Fungal glycosylinositolphosphoceramides (GIPCs) are involved in cell growth and fungal-host interactions. In this study, six GIPCs from the mycelium of the human pathogen Aspergillus fumigatus were purified and characterized using Q-TOF mass spectrometry and 1H, 13C, and 31P NMR. All structures have the same inositolphosphoceramide moiety with the presence of a C(18:0)-phytosphingosine conjugated to a 2-hydroxylated saturated fatty acid (2-hydroxy-lignoceric acid). The carbohydrate moiety defines two types of GIPC. The first, a mannosylated zwitterionic glycosphingolipid contains a glucosamine residue linked in alpha1-2 to an inositol ring that has been described in only two other fungal pathogens. The second type of GIPC presents an alpha-Manp-(1-->3)-alpha-Manp-(1-->2)-IPC common core. A galactofuranose residue is found in four GIPC structures, mainly at the terminal position via a beta1-2 linkage. Interestingly, this galactofuranose residue could be substituted by a choline-phosphate group, as observed only in the GIPC of Acremonium sp., a plant pathogen.  相似文献   
93.
Drosophila melanogaster has two β4-N-acetylgalactosaminyltransferases, β4GalNAcTA and β4GalNAcTB, that are able to catalyse the formation of lacdiNAc (GalNAcβ,4GlcNAc). LacdiNAc is found as a structural element of Drosophila glycosphingolipids (GSLs) suggesting that β4GalNAcTs contribute to the generation of GSL structures in vivo. Mutations in Egghead and Brainaic, enzymes that generate the β4GalNAcT trisaccharide acceptor structure GlcNAcβ,3Manβ,4GlcβCer, are lethal. In contrast, flies doubly mutant for the β4GalNAcTs are viable and fertile. Here, we describe the structural analysis of the GSLs in β4GalNAcT mutants and find that in double mutant flies no lacdiNAc structure is generated and the trisaccharide GlcNAcβ,3Manβ,4GlcβCer accumulates. We also find that phosphoethanolamine transfer to GlcNAc in the trisaccharide does not occur, demonstrating that this step is dependent on prior or simultaneous transfer of GalNAc. By comparing GSL structures generated in the β4GalNAcT single mutants we show that β4GalNAcTB is the major enzyme for the overall GSL biosynthesis in adult flies. In β4GalNAcTA mutants, composition of GSL structures is indistinguishable from wild-type animals. However, in β4GalNAcTB mutants precursor structures are accumulating in different steps of GSL biosynthesis, without the complete loss of lacdiNAc, indicating that β4GalNAcTA plays a minor role in generating GSL structures. Together our results demonstrate that both β4GalNAcTs are able to generate lacdiNAc structures in Drosophila GSL, although with different contributions in vivo, and that the trisaccharide GlcNAcβ,3Manβ,4GlcβCer is sufficient to avoid the major phenotypic consequences associated with the GSL biosynthetic defects in Brainiac or Egghead.  相似文献   
94.
Interferon (IFN)-γ and interleukin (IL)-4 regulate many types of immune responses. Here we report that acidic glycosphingolipids (AGLs) of Hypsizigus marmoreus and Pleurotus eryngii induced secretion of IFN- γ and IL-4 from T cells in a CD11c-positive cell-dependent manner similar to that of α-galactosylceramide (α-GalCer) and isoglobotriaosylceramide (iGb3), although activated T cells by AGLs showed less secretion of cytokine than those activated by α-GalCer. In addition, stimulation of these mushroom AGLs induced proliferation of NK1.1 α/β TCR-double positive cells in splenocytes. Administration of a mixture of α-GalCer and AGLs affected the stimulation of α-GalCer and generally induced a subtle Th1 bias for splenocytes but induced an extreme Th2 bias for thymocytes. These results suggested that edible mushroom AGLs contribute to immunomodulation.  相似文献   
95.
The formation of glycosphingolipid (GSL)-cholesterol microdomains in cell membranes has been proposed to function as platforms for the attachment of lipid-modified proteins, such as glycosylphosphatidylinositol (GPI)-anchored proteins and src-family tyrosine kinases. The microdomains are postulated to be involved in GPI-anchored protein signaling via src-family kinase. Here, the functional roles of GSLs in signal transduction mediated by the microdomains are discussed. Antibodies against GSLs co-precipitate GPI-anchored proteins, src-family kinases and several components of the microdomains. Antibody-mediated crosslinking of GSLs, as well as that of GPI-anchored proteins, induces a rapid activation of src-family kinases and a transient increase in the tyrosine phosphorylation of several substrates. Enzymatic degradation of GSLs reduces the activation of src-family kinase and tyrosine phosphorylation by antibody-mediated crosslinking of GPI-anchored protein. Furthermore, GSLs can also modulate signal transduction of immunoreceptors and growth factor receptors in the microdomains. Thus, GSLs have important roles in signal transduction mediated by the microdomains.  相似文献   
96.
Based on the results of a phylogenetic analysis of 16S rRNA and the presence of sphingoglycolipid in cellular lipids of the type strains, transfer of "Rhizomonas" suberifaciens, Blastomonas natatoria and Erythromonas ursincola to the genus Sphingomonas as Sphingomonas suberifaciens (van Bruggen et al 1990) comb. nov., Sphingomonas natatoria (Sly 1985) comb. nov., and Sphingomonas ursincola (Yurkov et al 1997) comb. nov. are herein proposed together with the emendation of genus Sphingomonas. The type strain of S. suberifaciens is van Bruggen Cal=ATCC 49382=NCPPB 3629=IFO 15211=JCM 8521, that of S. natatoria is ATCC 35951 =DSM 3183=NCIMB 12085=JCM10396, and that of S. ursincola is DSM 9006= KR-99.  相似文献   
97.
The MDR1 P-glycoprotein, an ATP-binding cassette (ABC) superfamily member that functions as an ATP-driven drug efflux pump, has been linked to resistance of human tumors to multiple chemotherapeutic agents. P-glycoprotein binds and actively transports a large variety of hydrophobic drugs and peptides. P-glycoprotein in reconstituted proteoliposomes is also an outwardly directed flippase for membrane phospholipids and simple glycosphinglipids. This review focuses on recent advances in our understanding of P-glycoprotein structure and function, particularly through the use of fluorescence spectroscopic approaches. Progress is being made towards understanding the structure of the transporter, especially the spatial relationship between the two nucleotide-binding domains. Exploration of the P-glycoprotein catalytic cycle using vanadate-trapped complexes has revealed that drug transport likely takes place by concerted conformational changes linked to relaxation of a high energy intermediate. Low resolution mapping of the protein using fluorescence resonance energy transfer showed that both the H and R drug-binding sites are located within the cytoplasmic leaflet. Two drugs can bind to the R-site simultaneously, suggesting that the protein contains a large flexible binding region.  相似文献   
98.
We report the molecular cloning and characterization of two novel β-N-acetylhexosaminidases (β-HEX, EC 3.2.1.52) from Paenibacillus sp. strain TS12. The two β-HEXs (Hex1 and Hex2) were 70% identical in primary structure, and the N-terminal region of both enzymes showed significant similarity with β-HEXs belonging to glycoside hydrolase family 20 (GH20). Interestingly, however, the C-terminal region of Hex1 and Hex2 shared no sequence similarity with the GH20 β-HEXs or other known proteins. Both recombinant enzymes, expressed in Escherichia coli BL21(DE3), hydrolyzed the β-N-acetylhexosamine linkage of chitooligosaccharides and glycosphingolipids such as asialo GM2 and Gb4Cer in the absence of detergent. However, the enzyme was not able to hydrolyze GM2 ganglioside in the presence or in the absence of detergent. We determined three crystal structures of Hex1; the Hex1 deletion mutant Hex1-ΔC at a resolution of 1.8 Å; Hex1-ΔC in complex with β-N-acetylglucosamine at 1.6 Å; and Hex1-ΔC in complex with β-N-acetylgalactosamine at 1.9 Å. We made a docking model of Hex1-ΔC with GM2 oligosaccharide, revealing that the sialic acid residue of GM2 could hinder access of the substrate to the active site cavity. This is the first report describing the molecular cloning, characterization and X-ray structure of a procaryotic β-HEX capable of hydrolyzing glycosphingolipids.  相似文献   
99.
An emerging area of investigation is the role of lipids as immunological antigens. CD1 glycoproteins comprise a family of molecules that are specialized for presenting lipids, glycolipids and lipopeptides to T lymphocytes. Variations in the cytoplasmic tail sequences of CD1 isoforms lead to differential association with adaptor proteins and consequently divergent routes of intracellular trafficking, resulting in surveillance of distinct cellular sites for binding lipid antigens. CD1 molecules efficiently gain access to lipids from intracellular microbial pathogens in endosomal compartments, and the trafficking and lipid-binding specialization of CD1 isoforms may correlate with the endosomal segregation of structurally distinct lipids. Endosomal trafficking is also critical for CD1d molecules to load antigenic self-lipids that are presented to autoreactive CD1d-restricted natural killer (NK)T cells and is required for the positive selection of these unique T cells. Recent studies reveal a key role for accessory proteins that facilitate the uptake of lipid antigens by CD1 molecules. These include lysosomal lipid-transfer proteins, such as the saposins, and apolipoprotein E, the major serum factor that binds and delivers extracellular lipids to antigen-presenting cells. These advances in understanding the CD1 lipid antigen presentation system raise new considerations about the role of the immune response in lipid-related diseases.  相似文献   
100.
The forces that hold cell membrane components together are non-covalent and thermodynamically favoured in aqueous media. Hence virtually any glycolipid or membrane glycoprotein might be expected to be incorporable into lipid bilayer membranes and this expectation has been borne out. In addition methods have been developed for linking lipid fragments to species that would not otherwise be expected to associate with bilayers. Techniques that have been successfully used to generate bilayer structures bearing glycolipids and glycoproteins include hydration of films dried down from non-aqueous solutions of the components, detergent removal from aqueous component solutions, exogenous addition to preformed membranes, and various organic solvent injection or reverse phase approaches. Bilayer association of glycolipids and membrane glycoproteins, with preservation of specific receptor function, seem easy to achieve — in fact difficult not to achieve. Optimization of receptor function to accurately mimic that of cell membranes and efficient preservation of functions such as transport or second messenger activation, are typically more demanding, although still feasible. A systematic approach can give considerable insight into the processes involved via identification of minimal necessary factors. Unfortunately, the actual relative arrangement of components, so critical to subtleties of glycolipid and glycoprotein function, remains almost totally unknown for lack of morphological information in the size range of individual macromolecules. The latter problem has come to be the most critical limitation to many studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号