首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   615篇
  免费   51篇
  国内免费   19篇
  685篇
  2023年   24篇
  2022年   37篇
  2021年   52篇
  2020年   32篇
  2019年   50篇
  2018年   35篇
  2017年   16篇
  2016年   27篇
  2015年   37篇
  2014年   29篇
  2013年   47篇
  2012年   22篇
  2011年   4篇
  2010年   8篇
  2009年   11篇
  2008年   17篇
  2007年   11篇
  2006年   12篇
  2005年   16篇
  2004年   4篇
  2003年   15篇
  2002年   13篇
  2001年   13篇
  2000年   4篇
  1999年   9篇
  1998年   8篇
  1997年   7篇
  1996年   12篇
  1995年   12篇
  1994年   10篇
  1993年   10篇
  1992年   7篇
  1991年   3篇
  1990年   3篇
  1989年   9篇
  1988年   8篇
  1987年   7篇
  1986年   3篇
  1985年   3篇
  1984年   6篇
  1983年   3篇
  1982年   3篇
  1981年   4篇
  1980年   4篇
  1979年   3篇
  1977年   3篇
  1976年   3篇
  1974年   3篇
  1973年   1篇
  1972年   3篇
排序方式: 共有685条查询结果,搜索用时 15 毫秒
671.
The metabolism of mycobacteria have been studied with reference to carbohydrate, lipids, nitrogen metabolism and oxidative phosphorylation. Some of the enzymes of glycolytic pathway, tricarboxylic acid cycle and lypogenic enzymes were purified, characterized and their kinetic properties investigated. The effect of age of the culture and environmental factors on different aspects of metabolism of mycobacteria were also studied. A comparison of lipid profile in various species of mycobacteria grown in different culture conditions were made. The metabolism of spheroplasts isolated from mycobacteria has been established with respect to their energy charge and to synthesize peptidoglycan using D-alanine as the precursor  相似文献   
672.
Autophagy     
《Autophagy》2013,9(12):2180-2182
Multidisciplinary approaches are increasingly being used to elucidate the role of autophagy in health and disease and to harness it for therapeutic purposes. The broad range of topics included in the program of the Vancouver Autophagy Symposium (VAS) 2013 illustrated this multidisciplinarity: structural biology of Atg proteins, mechanisms of selective autophagy, in silico drug design targeting ATG proteins, strategies for drug screening, autophagy-metabolism interplay, and therapeutic approaches to modulate autophagy. VAS 2013 took place at the British Columbia Cancer Research Centre, and was hosted by the CIHR Team in Investigating Autophagy Proteins as Molecular Targets for Cancer Treatment. The program was designed as a day of research exchanges, featuring two invited keynote speakers, internationally recognized for their groundbreaking contributions in autophagy, Dr Ana Maria Cuervo (Albert Einstein College of Medicine, Bronx, NY) and Dr Jayanta Debnath (University of California, San Francisco). By bringing together international and local experts in cell biology, drug discovery, and clinical translation, the symposium facilitated rich interdisciplinary discussions focused on multiple forms of autophagy and their regulation and modulation in the context of cancer.  相似文献   
673.
A gene encoding a putative GTP-specific phosphoenolpyruvate carboxykinase has been cloned and sequenced from the type I amitochondriate protist Giardia intestinalis. The deduced amino acid sequence is related most closely to homologs from hyperthermophilic archaebacteria and only more distantly to homologs from Eubacteria and Metazoa. Most enzymes of Giardia core metabolism, however, are related more closely to eubacterial and metazoan homologs. An archaebacterial relationship has been noted previously for the unusual acetyl-CoA synthetase (ADP-forming) of this organism. The results suggest that phosphoenolpyruvate carboxykinase and acetyl-CoA synthetase have been acquired from different sources than most enzymes of Giardia core metabolism.  相似文献   
674.
The main purpose of the present investigation was to study the effect of cloturin on aerobic glycolysis, endogenous and exogenous respiration and the level of ATP in both Ehrlich ascites carcinoma (EAC) and P388 murine leukaemia cells incubated in vitro. Also its effect on the level of total (T-SH) and non-protein (NP-SH) thiol groups was investigated. A significant inhibition of aerobic glycolysis was found only in P388 cells after 60 min of cloturin action. Cloturin inhibited both endogenous and exogenous respiration of EAC with succinate as substrate. Cloturin decreased the level of ATP after 2 h incubation in both types of tumour cell. The level of NP-SH was decreased more than that of T-SH in both types of cell.  相似文献   
675.
The apparent paradox of aerobic glycolysis has been investigated in bone and in cartilage. A new cytochemical procedure for hydroxyacyl dehydrogenase (HOAD) activity showed that the maximal activity of this enzyme in both tissues was equivalent to the maximal activity of glyceraldehyde 3-phosphate dehydrogenase (GAPD). The sum of these activities gave a measure of the maximum amount of acetyl-coenzyme A that could be produced. In these tissues, but not in liver which does not exhibit aerobic glycolysis, this summed value exceeded the maximal activity of succinate dehydrogenase (SDH). Consequently, it suggested that where fatty acid oxidation is sufficient to supply all the acetyl-coenzyme A required for the Krebs' cycle, that derived from fatty acid oxidation may inhibit pyruvate dehydrogenase causing accumulation of pyruvate which must be converted to lactate if pentose-shunt activity is to be maintained.  相似文献   
676.
677.
678.
Cultures of Tetrahymena pyriformis in a non-nutrient buffer degrade RNA and excrete hypoxanthine, uracil and orthophosphate. Glucose addition leads to the retention of a portion of the purine, pyrimidine, and orthophosphate by the cells; however, the hexose has little influence on the RNA level. Acetate supplementation has no effect on RNA degradation or on the distribution of the catabolic products between the cells and the environment. Interruption of oxidative phosphorylation by 2,4-dinitrophenol results in an increase in RNA degradation. This action is annulled by the glycolytic substrate, glucose, but not by acetate. A combination of iodoacetic acid and glucose blocks glycolysis and increases cellular RNA loss which can be reversed by the addition of the citric acid cycle substrate, acetate. These findings suggest that the available cellular energy supply in starved cells is sufficient to regulate the rate of RNA degradation. Disruption of ATP generation by the appropriate inhibitors, however, allows the demonstration of the importance of energy-yielding reactions in the determination of the amount of nucleic acid loss. It appears that glycolysis and oxidative phosphorylation are equally efficient in sustaining the regulatory process. RNA synthesis during starvation conditions is a discontinuous process with a sharp rate change after 30 min of incubation. 2,4-Dinitrophenol inhibits [2-14C] uracil incorporation into the nucleic acid. Glucose does not annul the inhibition of synthesis in contrast to the influence of the hexose on RNA degradation. This observation demonstrates that the synthetic and degradative processes are not directly coupled. Glycogen synthesis and RNA degradation appear to compete for the available energy supply and respond in a similar fashion to the metabolic inhibitors and carbon sources.  相似文献   
679.
Summary Tumor Necrosis Factor (TNF) inhibits lipoprotein lipase activity in cultured myocytes and in the Langendorff rat heart after 3 h perfusion with TNF of glucocorticoid-pretreated rats. TNF acutely stimulates glyc(ogen)olysis and concomitantly endogenous lipolysis. The latter was significantly increased only when rats had been pretreated with glucocorticoid or fed a trierucate-rich diet. Under these conditions, contractile activity of the Langendorff hearts was acutely increased by TNF The mechanism of the actue increase of contractile function and the accompanying increased glycolytic and lipolytic activities, by TNF, may be explained by increased cytosolic Ca2+ and cAMP levels.  相似文献   
680.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号