首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   603篇
  免费   51篇
  国内免费   18篇
  2023年   21篇
  2022年   27篇
  2021年   52篇
  2020年   32篇
  2019年   50篇
  2018年   35篇
  2017年   16篇
  2016年   27篇
  2015年   37篇
  2014年   29篇
  2013年   47篇
  2012年   22篇
  2011年   4篇
  2010年   8篇
  2009年   11篇
  2008年   17篇
  2007年   11篇
  2006年   12篇
  2005年   16篇
  2004年   4篇
  2003年   15篇
  2002年   13篇
  2001年   13篇
  2000年   4篇
  1999年   9篇
  1998年   8篇
  1997年   7篇
  1996年   12篇
  1995年   12篇
  1994年   10篇
  1993年   10篇
  1992年   7篇
  1991年   3篇
  1990年   3篇
  1989年   9篇
  1988年   8篇
  1987年   7篇
  1986年   3篇
  1985年   3篇
  1984年   6篇
  1983年   3篇
  1982年   3篇
  1981年   4篇
  1980年   4篇
  1979年   3篇
  1977年   3篇
  1976年   3篇
  1974年   3篇
  1973年   1篇
  1972年   3篇
排序方式: 共有672条查询结果,搜索用时 31 毫秒
41.
42.
Clear cell renal cell carcinoma (ccRCC) is the most popular kidney cancer in adults. Metabolic shift toward aerobic glycolysis is a fundamental factor for ccRCC therapy. MicroRNAs (miRNAs) are thought to be important regulators in ccRCC development and progression. Phosphoinositide-dependent kinase 1 (PDK1) is required for metabolic activation; however, the role of PDK1-induced glycolytic metabolism regulated by miRNAs is unclear in ccRCC. So, the purpose of the current study is to elucidate the underlying mechanism in ccRCC cell metabolism mediated by PDK1. Our results revealed that miR-409-3p inhibited glycolysis by regulating PDK1 expression in ccRCC cells. We also found that miR-409-3p was regulated by hypoxia. Our results indicated that PDK1 facilitated ccRCC cell glycolysis, regulated by miR-409-3p in hypoxia.  相似文献   
43.
SR splicing-factors (SRSFs) play a vital role in carcinogenesis. SRSF5 was demonstrated to be upregulated in lung cancer and identified as a novel prognostic indicator for small-cell lung cancer. However, the role of SRSF5 in the pathogenesis of non–small cell lung cancer (NSCLC) and the molecular mechanism involved are still undefined. The expression of SRSF5 in NSCLC cells was detected by quantitative real-time polymerase chain reaction and Western blot analysis. The proliferation of cells was evaluated by cell counting kit-8 and BrdU assays. Apoptosis was assessed by flow cytometry and Western blot analysis of apoptosis-associated proteins including B-cell lymphoma 2 (Bcl-2), Bax, and cytochrome C (Cyt C). Glycolysis was detected by determining glucose consumption, lactate production, and pyruvate kinase M2 (PKM2) expression. We found that SRSF5 messenger RNA and protein levels were elevated in NSCLC cells. SRSF5 knockdown inhibited the proliferation and Ki67 expression in NSCLC cells. SRSF5 silencing increased the apoptotic rate, upregulated Bax and Cyt C, and decreased Bcl-2 level in NSCLC cells. Moreover, Knockdown of SRSF5 repressed glycolysis in NSCLC cells via reducing PKM2 expression. Enhanced glycolysis by PKM2 overexpression attenuated the effects of SRSF5 silencing on NSCLC cell proliferation and apoptosis. Overall, knockdown of SRSF5 inhibited proliferative ability and induced apoptosis by suppressing PKM2 expression in NSCLC cells.  相似文献   
44.
Human acylphosphatase (h-AP, EC 3.6.1.7) has been reported to catalyse the hydrolysis of the 1-phosphate group of 1,3-diphosphoglycerate. In vivo operation of this reaction in the yeast Saccharomyces cerevisiae would bypass phosphoglycerate kinase and thus reduce the ATP yield from glycolysis. To investigate whether h-AP can indeed replace the S. cerevisiae phosphoglycerate kinase, a multi-copy plasmid carrying the h-AP gene under control of the yeast TDH3 promoter was introduced into a pgk1 mutant of S. cerevisiae. A strain carrying the expression vector without the h-AP cassette was used as a reference. For both strains, steady-state carbon- and energy-limited chemostat cultures were obtained at a dilution rate of 0.10 h–1on a medium containing a mixture of glucose and ethanol (15% and 85% on a carbon basis, respectively). Although the h-AP strain exhibited a high acylphosphatase activity in cell extracts, switching to glucose as sole carbon and energy source resulted in a complete arrest of glucose consumption and growth. The lack of a functional glycolytic pathway was further evident from the absence of ethanol formation in the presence of excess glucose in the culture. As h-AP cannot replace yeast phosphoglycerate kinase in vivo, the enzyme is not a useful tool to modify the ATP yield of glycolysis in S. cerevisiae.  相似文献   
45.
Intraerythrocytic Plasmodium parasites depend on glycolysis for energy production. The stoichiometric amounts of lactate and protons produced are efficiently removed by a lactate:H(+) symporter. However, inhibition of recently identified plasma-membrane proton pumps result in acidification, suggesting additional mechanism(s) for proton generation. This article attempts to integrate the knowledge on the metabolic generation of protons and their disposal in the regulation of parasite cytosolic pH, and suggests additional roles for the various proton pumps that act in the parasite membrane.  相似文献   
46.
Using molecular genetics we have introduced uncoupled ATPase activity in two different bacterial species, Escherichia coli and Lactococcus lactis, and determined the elasticities of the growth rate and glycolytic flux towards the intracellular [ATP]/[ADP] ratio. During balanced growth in batch cultures of E. coli the ATP demand was found to have almost full control on the glycolytic flux (FCC=0.96) and the flux could be stimulated by 70%. In contrast to this, in L. lactis the control by ATP demand on the glycolytic flux was close to zero. However, when we used non-growing cells of L. lactis (which have a low glycolytic flux) the ATP demand had a high flux control and the flux could be stimulated more than two fold. We suggest that the extent to which ATP demand controls the glycolytic flux depends on how much excess capacity of glycolysis is present in the cells.  相似文献   
47.
Several genetic and transgenic mouse models are currently being used for studying the regulation of myocardial contractility under normal conditions and in disease states. Little information has been provided, however, about myocardial energy metabolism in mouse hearts. We measured glycolysis, glucose oxidation and palmitate oxidation (using 3H-glucose, 14C-glucose and 3H-palmitate) in isolated working mouse hearts during normoxic conditions (control group) and following a 15 min global no-flow ischemic period (reperfusion group). Fifty min following reperfusion (10 min Langendorff perfusion + 40 min working heart perfusion) aortic flow, coronary flow, cardiac output, peak systolic pressure and heart rate were 44 ± 4, 88 ± 4, 57 ± 4, 94 ± 2 and 81 ± 4% of pre-ischemic values. Rates of glycolysis and glucose oxidation in the reperfusion group (13.6 ± 0.8 and 2.8 ± 0.2 mol/min/g dry wt) were not different from the control group (12.3 ± 0.6 and 2.5 ± 0.2 mol/min/g dry wt). Palmitate oxidation, however, was markedly elevated in the reperfusion group as compared to the control group (576 ± 37 vs. 357 ± 21 nmol/min/g dry wt, p < 0.05). This change in myocardial substrate utilization was accompanied by a marked fall in cardiac efficiency measured as cardiac output/oxidative ATP production (136 ± 10 vs. 54 ± 5 ml/mol ATP, p < 0.05, control and reperfusion group, respectively). We conclude that ischemia-reperfusion in isolated working mouse hearts is associated with a shift in myocardial substrate utilization in favour of fatty acids, in line with previous observations in rat.  相似文献   
48.
The influence of hepatic metallothionein (MT) and zinc (Zn) on glycolysis was investigated in primary cultures of mouse hepatocytes prepared from MT-normal (+/+) and MT-null (−/−) mice. In MT +/+ mice, a close relationship was observed between the Zn concentration in the incubation medium (10–150 μM), increased MT levels in the cells, and increased glycolysis (accumulation of lactate + pyruvate) over 24 h, with significant effects seen at physiological levels of Zn (10–25 μM). Hepatocytes from MT −/− mice had significantly lower basal rates of glycolysis and demonstrated increased glycolysis only at Zn concentrations of 50 μM or greater. The lactate: pyruvate ratio was higher in the MT +/+ hepatocytes. The oxidation of endogenous fatty acid (accumulation of the ketone bodies, 3-hydroxybutyrate and acetoacetate) was initially greater in the MT +/+ hepatocytes, although only MT −/− hepatocytes showed increased ketone body production in response to Zn. The 3-hydroxybutyrate: acetoacetate ratio was higher in the MT +/+ hepatocytes and increased with increasing Zn concentrations. Intracellular Zn accumulation was 60% greater in the MT +/+ hepatocytes, with approximately 80% of the extra Zn associated with MT. The results implicate MT-associated Zn rather than increased intracellular Zn per se in the regulation of hepatic carbohydrate metabolism.  相似文献   
49.
50.
A reconstituted glycolytic system has been established from individually purified enzymes to simulate the conversion of glucose to ethanol plus CO2 by yeast. Sustained and extensive conversion occurred provided that input of glucose matched the rate of ATP degradation appropriately.ATPase activity could be replaced by arsenate, which uncoupled ATP synthesis from glycolysis. The mode of uncoupling was investigated, and it was concluded that the artificial intermediate, 1-arseno-3-phosphoglycerate, has a half-life of no more than a few milliseconds. Arsenate at 4 mM concentration could simulate the equivalent of 10 μmol ml?1 min?1 of ATPase activity.The reconstituted enzyme system was capable of totally degrading 1 M (18% w/v) glucose in 8 h giving 9% (w/v) ethanol. The levels of metabolites during metabolism were measured to detect rate-limiting steps.The successful operation of the reconstituted enzyme system demonstrates that it is possible to carry out complex chemical transformations with multiple enzyme systems in vitro.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号