首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   615篇
  免费   51篇
  国内免费   19篇
  685篇
  2023年   24篇
  2022年   37篇
  2021年   52篇
  2020年   32篇
  2019年   50篇
  2018年   35篇
  2017年   16篇
  2016年   27篇
  2015年   37篇
  2014年   29篇
  2013年   47篇
  2012年   22篇
  2011年   4篇
  2010年   8篇
  2009年   11篇
  2008年   17篇
  2007年   11篇
  2006年   12篇
  2005年   16篇
  2004年   4篇
  2003年   15篇
  2002年   13篇
  2001年   13篇
  2000年   4篇
  1999年   9篇
  1998年   8篇
  1997年   7篇
  1996年   12篇
  1995年   12篇
  1994年   10篇
  1993年   10篇
  1992年   7篇
  1991年   3篇
  1990年   3篇
  1989年   9篇
  1988年   8篇
  1987年   7篇
  1986年   3篇
  1985年   3篇
  1984年   6篇
  1983年   3篇
  1982年   3篇
  1981年   4篇
  1980年   4篇
  1979年   3篇
  1977年   3篇
  1976年   3篇
  1974年   3篇
  1973年   1篇
  1972年   3篇
排序方式: 共有685条查询结果,搜索用时 15 毫秒
21.
Tripartite motif containing 59 (TRIM59) functions as an oncoprotein in various human cancers including ovarian cancer. In this study, we found that TRIM59 gene amplification was prevalent in ovarian cancer tissues, and its amplification was significantly correlated with poorer overall survival. Moreover, knockdown of TRIM59 in SKOV3 and OVCAR3 cells, which had relatively high level of TRIM59, suppressed glucose uptake and lactate production. TRIM59 knockdown also decreased the expression of c-Myc and lactate dehydrogenase A, and the phosphorylation of extracellular signal-regulated kinase (ERK). TRIM59 overexpression in A2780 cells, which expressed low level of TRIM59, showed reverse effects. Notably, treatment with an ERK inhibitor (PD98059) completely abolished the oncogenic effects of TRIM59 overexpression. Interestingly, TRIM59 increased the ubiquitination of MAP kinase phosphatase 3 (MKP3), which may dephosphorylate and inactivate ERK. Ectopic expression of MKP3 inhibited the promoting effects of TRIM59 on glycolysis and the phosphorylation of ERK. TRIM59 protein expression was negatively correlated with MKP3 protein expression in ovarian cancer tissues. Finally, TRIM59 amplification potently affected the anticancer effect of 3-bromopyruvate, an inhibitor of glycolysis, in ovarian cancer cells and patient-derived xenograft. In conclusion, these results suggest that TRIM59 may regulate glycolysis in ovarian cancer via the MKP3/ERK pathway.  相似文献   
22.
Tumour cells thrive in environments that would be hostile to their normal cell counterparts. Survival depends on the selection of cell lines that harbour modifications of both, gene regulation that shifts the balance between the cell cycle and apoptosis and those that involve the plasticity of the metabolic machinery. With regards to metabolism, the selected phenotypes usually display enhanced anaerobic glycolysis even in the presence of oxygen, the so-called Warburg effect, and anabolic pathways that provide precursors for the synthesis of lipids, proteins and DNA. The review will discuss the original ideas of Otto Warburg and how they initially led to the notion that mitochondria of tumour cells were dysfunctional. Data will be presented to show that not only the organelles are viable and respiring, but that they are key players in tumorigenesis and metastasis. Likewise, interconnecting pathways that stand out in the tumour phenotype and that require intact mitochondria such as glutaminolysis will be addressed. Furthermore, comments will be made as to how the peculiarities of the biochemistry of tumour cells renders them amenable to new forms of treatment by highlighting possible targets for inhibitors. In this respect, a case study describing the effect of a metabolite analogue, the alkylating agent 3BP (3-bromopyruvate), on glycolytic enzyme targets will be presented.  相似文献   
23.
Geobacillus thermoglucosidasius is a Gram‐positive, thermophilic bacterium capable of ethanologenic fermentation of both C5 and C6 sugars and may have possible use for commercial bioethanol production [Tang et al., 2009; Taylor et al. (2009) Trends Biotechnol 27(7): 398–405]. Little is known about the physiological changes that accompany a switch from aerobic (high redox) to microaerobic/fermentative (low redox) conditions in thermophilic organisms. The changes in the central metabolic pathways in response to a switch in redox potential were analyzed using quantitative real‐time PCR and proteomics. During low redox (fermentative) states, results indicated that glycolysis was uniformly up‐regulated, the Krebs (tricarboxylic acid or TCA) cycle non‐uniformly down‐regulated and that there was little to no change in the pentose phosphate pathway. Acetate accumulation was accounted for by strong down‐regulation of the acetate CoA ligase gene (acs) in addition to up‐regulation of the pta and ackA genes (involved in acetate production), thus conserving ATP while reducing flux through the TCA cycle. Substitution of an NADH dehydrogenase (down‐regulated) by an up‐regulated NADH:FAD oxidoreductase and up‐regulation of an ATP synthase subunit, alongside the observed shifts in the TCA cycle, suggested that an oxygen‐scavenging electron transport chain likely remained active during low redox conditions. Together with the observed up‐regulation of a glyoxalase and down‐regulation of superoxide dismutase, thought to provide protection against the accumulation of toxic phosphorylated glycolytic intermediates and reactive oxygen species, respectively, the changes observed in G. thermoglucosidasius NCIMB 11955 under conditions of aerobic‐to‐microaerobic switching were consistent with responses to low pO2 stress. Biotechnol. Bioeng. 2013; 110: 1057–1065. © 2012 Wiley Periodicals, Inc.  相似文献   
24.
25.
Uterine leiom yomas are benign tumors highly prevalent in reproductive women. In thecurrent study, initially, we aimed to screen five different strawberry cultivars (Alba, Clery, Portola, Tecla, and Romina) to identify efficient cultivars in terms of phytochemical characterization and biological properties by measuring phenolic and anthocyanin content as well as antioxidant capacity, and by measuring apoptotic rate and reactive oxygen species (ROS) production in uterine leiomyoma cells. Next, we focused on the most efficient ones, cultivar Alba (A) and Romina (R) as well as Romina anthocyanin (RA) fraction for their ability to regulate oxidative phosphorylation (oxygen consumption rate [OCR]) glycolysis (extracellular acidification rate [ECAR]), and also fibrosis. Leiomyoma and myometrial cells were treated with a methanolic extract of A and R (250 μg/ml) or with RA (50 μg/ml) for 48 hr to measure OCR and ECAR, as well as gene expression associated with fibrosis. In the leiomyoma cells, RA was more effective in inducing apoptosis and increasing intracellular ROS levels, followed by R and A. In myometrial cells, all strawberry treatments increased the cellular viability and decreased ROS concentrations. Leiomyoma cells showed also a significant decrease in ECAR, especially after RA treatment, while OCR was slightly increased in both myometrial and leiomyoma cells. R and RA treatment significantly decreased collagen 1A1, fibronectin, versican, and activin A messenger RNA expression in leiomyoma cells. In conclusion, this study suggests that Romina, or its anthocyanin fraction, can be developed as a therapeutic and/or preventive agent for uterine leiomyomas, confirming the healthy effects exerted by these fruits and their bioactive compounds.  相似文献   
26.
Wnt1-inducible signaling protein 1 (WISP1) is a matricellular protein and downstream target of Wnt/β-catenin signaling. This study sought to determine the role of WISP1 in glucose metabolism and chemoresistance in laryngeal squamous cell carcinoma. WISP1 expression was silenced or upregulated in Hep-2 cells by the transfection of WISP1 siRNA or AdWISP1 vector. Ectopic WISP1 expression regulated glucose uptake and lactate production in Hep-2 cells. Subsequently, the expression of glucose transporter 1 (GLUT1) was significantly modulated by WISP1. Furthermore, WISP1 increased cell survival rates, diminished cell death rates, and suppressed ataxia-telangiectasia-mutated (ATM)-mediated DNA damage response pathway in cancer cells treated with cisplatin through GLUT1. WISP1 also promoted cancer cell tumorigenicity and growth in mice implanted with Hep-2 cells. Additionally, WISP1 activated the YAP1/TEAD1 pathway that consequently contributed to the regulation of GLUT1 expression. In summary, WISP1 regulated glucose metabolism and cisplatin resistance in laryngeal cancer by regulating GLUT1 expression. WISP1 may be used as a potential therapeutic target for laryngeal cancer.  相似文献   
27.
Clear cell renal cell carcinoma (ccRCC) is the most popular kidney cancer in adults. Metabolic shift toward aerobic glycolysis is a fundamental factor for ccRCC therapy. MicroRNAs (miRNAs) are thought to be important regulators in ccRCC development and progression. Phosphoinositide-dependent kinase 1 (PDK1) is required for metabolic activation; however, the role of PDK1-induced glycolytic metabolism regulated by miRNAs is unclear in ccRCC. So, the purpose of the current study is to elucidate the underlying mechanism in ccRCC cell metabolism mediated by PDK1. Our results revealed that miR-409-3p inhibited glycolysis by regulating PDK1 expression in ccRCC cells. We also found that miR-409-3p was regulated by hypoxia. Our results indicated that PDK1 facilitated ccRCC cell glycolysis, regulated by miR-409-3p in hypoxia.  相似文献   
28.
SR splicing-factors (SRSFs) play a vital role in carcinogenesis. SRSF5 was demonstrated to be upregulated in lung cancer and identified as a novel prognostic indicator for small-cell lung cancer. However, the role of SRSF5 in the pathogenesis of non–small cell lung cancer (NSCLC) and the molecular mechanism involved are still undefined. The expression of SRSF5 in NSCLC cells was detected by quantitative real-time polymerase chain reaction and Western blot analysis. The proliferation of cells was evaluated by cell counting kit-8 and BrdU assays. Apoptosis was assessed by flow cytometry and Western blot analysis of apoptosis-associated proteins including B-cell lymphoma 2 (Bcl-2), Bax, and cytochrome C (Cyt C). Glycolysis was detected by determining glucose consumption, lactate production, and pyruvate kinase M2 (PKM2) expression. We found that SRSF5 messenger RNA and protein levels were elevated in NSCLC cells. SRSF5 knockdown inhibited the proliferation and Ki67 expression in NSCLC cells. SRSF5 silencing increased the apoptotic rate, upregulated Bax and Cyt C, and decreased Bcl-2 level in NSCLC cells. Moreover, Knockdown of SRSF5 repressed glycolysis in NSCLC cells via reducing PKM2 expression. Enhanced glycolysis by PKM2 overexpression attenuated the effects of SRSF5 silencing on NSCLC cell proliferation and apoptosis. Overall, knockdown of SRSF5 inhibited proliferative ability and induced apoptosis by suppressing PKM2 expression in NSCLC cells.  相似文献   
29.
The ability of individual bovine blastocysts to survive freezing and thawing procedures was assessed by measuring glucose and pyruvate uptake and lactate production immediately before and after cryopreservation. Using glucose and pyruvate uptake and lactate production it was not possible to determine, prior to freezing, which blastocysts would be viable after thawing. However, in the 5 hr immediately after thawing, those blastocysts which expanded their blastocoel had significantly greater glucose and pyruvate uptake and lactate production (P < 0.01) than those embryos which failed to develop after a 14 hr overnight incubation. Interestingly, after thawing, two distinct populations of blastocysts existed with respect to glucose uptake and lactate production, indicating that it is possible to identify those blastocysts immediately after thawing which will reexpand. In contrast, there was a considerable degree of overlap in pyruvate uptakes between the viable and nonviable groups of embryos, indicating that this parameter could not be used to select viable embryos after thawing. There was an increase in the calculated oxidation of carbohydrates after thawing, consistent with a partial uncoupling of the inner mitochondrial membrane. In conclusion, glucose uptake and lactate production can be used to select prospectively viable blastocysts immediately after thawing, indicating that glycolysis is a major energy-generating pathway for the embryo at this time. © 1996 Wiley-Liss, Inc.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号