首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   615篇
  免费   51篇
  国内免费   19篇
  685篇
  2023年   24篇
  2022年   37篇
  2021年   52篇
  2020年   32篇
  2019年   50篇
  2018年   35篇
  2017年   16篇
  2016年   27篇
  2015年   37篇
  2014年   29篇
  2013年   47篇
  2012年   22篇
  2011年   4篇
  2010年   8篇
  2009年   11篇
  2008年   17篇
  2007年   11篇
  2006年   12篇
  2005年   16篇
  2004年   4篇
  2003年   15篇
  2002年   13篇
  2001年   13篇
  2000年   4篇
  1999年   9篇
  1998年   8篇
  1997年   7篇
  1996年   12篇
  1995年   12篇
  1994年   10篇
  1993年   10篇
  1992年   7篇
  1991年   3篇
  1990年   3篇
  1989年   9篇
  1988年   8篇
  1987年   7篇
  1986年   3篇
  1985年   3篇
  1984年   6篇
  1983年   3篇
  1982年   3篇
  1981年   4篇
  1980年   4篇
  1979年   3篇
  1977年   3篇
  1976年   3篇
  1974年   3篇
  1973年   1篇
  1972年   3篇
排序方式: 共有685条查询结果,搜索用时 15 毫秒
121.
122.
123.
Summary The metabolism by coronary microvascular endothelial cells (CMEC) of the heart typical substrates palmitate and lactate was compared to that of glucose and glutamine. Confluent cultures of CMEC were used. Palmitate oxidation was saturable and independent of the exogenous albumin concentration. Palmitate, 300 M, lactate, 1 mM, and glutamine, 0.5 mM, were oxidized to 35, 46, and 56 nmol CO2/h × mg protein. These oxidation rates were decreased by 80, 66, and 48% in presence of 5 mM glucose. The largest energy yield was obtained by glycolytic breakdown of glucose. Glucose, 5 mM, was degraded to lactate by 99%, and oxidized in the Krebs cycle by only 0.04%. 1% was catabolized via the hexose monophosphate pathway. The rate of glucose oxidation in the Krebs cycle could be 30-fold increased by the uncoupler 2,4-dinitrophenol, 30 µM. At concentrations lower than 1 mM the amount of glucose oxidized in the Krebs cycle also grew, indicating existence of the Crabtree effect. The energy demand of CMEC seems to be of the same order as that of the arrested heart.  相似文献   
124.
Changes in the activity of hexokinase and lactate dehydrogenase isoenzymes in the three brain regions and heart were studied in the 6-Aminonicotinamide-treated rats. Drug administration decreased the particulate hexokinase and lactate dehydrogenase activity, but increased the soluble hexokinase  相似文献   
125.
Dysfunctional adipocyte precursors have emerged as key determinants for obesity‐ and aging‐related inflammation, but the mechanistic basis remains poorly understood. Here, we explored the dysfunctional adipose tissue of elderly and obese individuals focusing on the metabolic and inflammatory state of human adipose‐derived mesenchymal stromal cells (hASCs), and on sirtuins, which link metabolism and inflammation. Both obesity and aging impaired the differentiation potential of hASCs but had a different impact on their proliferative capacity. hASCs from elderly individuals (≥65 years) showed an upregulation of glycolysis‐related genes, which was accompanied by increased lactate secretion and glycogen storage, a phenotype that was exaggerated by obesity. Multiplex protein profiling revealed that the metabolic switch to glycogenesis was associated with a pro‐inflammatory secretome concomitant with a decrease in the protein expression of SIRT1 and SIRT6. siRNA‐mediated knockdown of SIRT1 and SIRT6 in hASCs from lean adults increased the expression of pro‐inflammatory and glycolysis‐related markers, and enforced glycogen deposition by overexpression of protein targeting to glycogen (PTG) led to a downregulation of SIRT1/6 protein levels, mimicking the inflammatory state of hASCs from elderly subjects. Overall, our data point to a glycogen‐SIRT1/6 signaling axis as a driver of age‐related inflammation in adipocyte precursors.  相似文献   
126.
Abnormal nuclear structure caused by dysregulation of skeletal proteins is a common phenomenon in tumour cells. However, how skeletal proteins promote tumorigenesis remains uncovered. Here, we revealed the mechanism by which skeletal protein Emerin (EMD) promoted glucose metabolism to induce lung adenocarcinoma (LUAD). Firstly, we identified that EMD was highly expressed and promoted the malignant phenotypes in LUAD. The high expression of EMD might be due to its low level of ubiquitination. Additionally, the ISGylation at lysine 37 of EMD inhibited lysine 36 ubiquitination and upregulated EMD stability. We further explored that EMD could inhibit aerobic oxidation and stimulate glycolysis. Mechanistically, via its β‐catenin interaction domain, EMD bound with PDHA, stimulated serine 293 and 300 phosphorylation and inhibited PDHA expression, facilitated glycolysis of glucose that should enter the aerobic oxidation pathway, and EMD ISGylation was essential for EMD‐PDHA interaction. In clinical LUAD specimens, EMD was negatively associated with PDHA, while positively associated with EMD ISGylation, tumour stage and diameter. In LUAD with higher glucose level, EMD expression and ISGylation were higher. Collectively, EMD was a stimulator for LUAD by inhibiting aerobic oxidation via interacting with PDHA. Restricting cancer‐promoting role of EMD might be helpful for LUAD treatment.  相似文献   
127.
Oncogenic epidermal growth factor receptor (EGFR) signaling plays an important role in regulating global metabolic pathways, including aerobic glycolysis, the pentose phosphate pathway (PPP), and pyrimidine biosynthesis. However, the molecular mechanism by which EGFR signaling regulates cancer cell metabolism is still unclear. To elucidate how EGFR signaling is linked to metabolic activity, we investigated the involvement of the RAS/MEK/ERK and PI3K/AKT/mammalian target of rapamycin (mTOR) pathways on metabolic alteration in lung adenocarcinoma (LAD) cell lines with activating EGFR mutations. Although MEK inhibition did not alter lactate production and the extracellular acidification rate, PI3K/mTOR inhibitors significantly suppressed glycolysis in EGFR-mutant LAD cells. Moreover, a comprehensive metabolomics analysis revealed that the levels of glucose 6-phosphate and 6-phosphogluconate as early metabolites in glycolysis and PPP were decreased after inhibition of the PI3K/AKT/mTOR pathway, suggesting a link between PI3K signaling and the proper function of glucose transporters or hexokinases in glycolysis. Indeed, PI3K/mTOR inhibition effectively suppressed membrane localization of facilitative glucose transporter 1 (GLUT1), which, instead, accumulated in the cytoplasm. Finally, aerobic glycolysis and cell proliferation were down-regulated when GLUT1 gene expression was suppressed by RNAi. Taken together, these results suggest that PI3K/AKT/mTOR signaling is indispensable for the regulation of aerobic glycolysis in EGFR-mutated LAD cells.  相似文献   
128.
Hexokinase II (HKII) is responsible for the first step in the glycolysis pathway by adding a phosphate on to the glucose molecule so it can proceed down the pathway to produce the energy for continuous cancer cell growth. Tumour cells overexpress the HKII enzyme. In fact, it is the overexpression of the HKII enzyme that makes the diagnosis of cancer possible when imaged by positron emission tomography (PET). HKII binds to the voltage-dependent anion channel (VDAC) located on the mitochondrial outer membrane (MOM). When bound to the MOM, HKII is blocking a major cell death pathway. Thus, HKII is responsible for two characteristics of cancer cells, rapid tumour growth and inability of cancer cells to undergo apoptosis. One method to identify novel compounds that may interfere with the HKII–VDAC-binding site is to create a molecular model using the crystal structure of HKII. However, the amino acid(s) responsible for HKII binding to VDAC are not known. Therefore, a series of truncations and point mutations were made to the N-terminal end of HKII to identify the binding site to VDAC. Deletions of the first 10 and 20 amino acids indicated that important amino acid(s) for binding were located within the first 10 amino acids. Next, a series of point mutations were made within the first 10 amino acids. It is clear from the immunofluorescence images and immunoblot results that mutating the fifth amino acid from histidine to proline completely abolished binding to the MOM.  相似文献   
129.
Enzymes of glycolysis in Trypanosoma brucei have been identified as potential drug targets for African sleeping sickness because glycolysis is the only source of ATP for the bloodstream form of this parasite. Several inhibitors were previously reported to bind preferentially to trypanosomal phosphoglucose isomerase (PGI, the second enzyme in glycolysis) than to mammalian PGIs, which suggests that PGI might make a good target for species-specific drug design. Herein, we report recombinant expression, purification, crystallization and X-ray crystal structure determination of T. brucei PGI. One structure solved at 1.6 A resolution contains a substrate, D-glucose-6-phosphate, in an extended conformation in the active site. A second structure solved at 1.9 A resolution contains a citrate molecule in the active site. The structures are compared with the crystal structures of PGI from humans and from Leishmania mexicana. The availability of recombinant tPGI and its first high-resolution crystal structures are initial steps in considering this enzyme as a potential drug target.  相似文献   
130.
Phosphoglycerate kinase 2 (PGK2) is an isozyme of the glycolytic pathway that provides ATP required for sperm motility. It is encoded by an autosomal retrogene that is expressed only during spermatogenesis, concomitant with the inactivation of the X-linked Pgk1 gene. PGK2 from the mouse, Mus musculus, has been overexpressed from a plasmid in bacteria and purified. It was crystallized in three forms: as the apoenzyme, as a complex with 3-phosphoglycerate (3PG), and as a complex with 3PG and ATP. The crystal structures were solved to 2.7, 2.0, and 2.7 A resolutions, respectively. The overall fold is nearly identical with previously solved mammalian PGK1 molecules. The apoenzyme is in the "open" form; that is the N-terminal domain that can bind 3PG and the C-terminal domain that binds ATP are too far apart for the substrates to interact. Binding 3PG causes a 13 degree rotation that partially closes the structure and causes helix 13, which is disordered in the unliganded structure, to stabilize. Binding ATP leaves the protein in the open configuration but also causes helix 13 to be ordered. Sequence alignment suggests that the active site of PGK2 is essentially identical to that of the cytoplasmic PGK1, but significant differences accumulate on a side of the C-terminal domain away from the active site. These changes may mediate the binding of this isoform to other proteins within the sperm flagellum, while still allowing the hinging action between the domains that is essential to catalytic activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号