首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   592篇
  免费   41篇
  国内免费   13篇
  2022年   13篇
  2021年   12篇
  2020年   13篇
  2019年   13篇
  2018年   11篇
  2017年   15篇
  2016年   16篇
  2015年   12篇
  2014年   34篇
  2013年   41篇
  2012年   27篇
  2011年   26篇
  2010年   19篇
  2009年   15篇
  2008年   17篇
  2007年   36篇
  2006年   29篇
  2005年   20篇
  2004年   24篇
  2003年   23篇
  2002年   19篇
  2001年   21篇
  2000年   12篇
  1999年   18篇
  1998年   12篇
  1997年   12篇
  1996年   9篇
  1995年   11篇
  1994年   10篇
  1993年   9篇
  1992年   10篇
  1991年   2篇
  1990年   5篇
  1989年   11篇
  1988年   4篇
  1987年   4篇
  1986年   4篇
  1985年   13篇
  1984年   6篇
  1983年   2篇
  1982年   3篇
  1981年   4篇
  1980年   4篇
  1979年   6篇
  1978年   6篇
  1977年   4篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1971年   2篇
排序方式: 共有646条查询结果,搜索用时 31 毫秒
151.
Lipopolysaccharide (LPS) of Haemophilus influenzae comprises a conserved tri-l-glycero-d-manno-heptosyl inner-core moiety (l-α-d-Hepp-(1→2)-[PEtn→6]-l-α-d-Hepp-(1→3)-[β-d-GlcIp-(1→4)]-l-α-d-Hepp-(1→5)-α-Kdop) to which addition of β-d-Glcp to O-4 of GlcI in serotype b strains is controlled by the gene lex2B. In non-typeable H. influenzae strains 1124 and 2019, however, a β-d-Galp is linked to O-4 of GlcI. In order to test the hypothesis that the lex2 locus is involved in the expression of β-d-Galp-(1→4-β-d-Glcp-(1→ from HepI, lex2B was inactivated in strains 1124 and 2019, and LPS glycoform populations from the resulting mutant strains were investigated. Detailed structural analyses using NMR techniques and electrospray-ionisation mass spectrometry (ESIMS) on O-deacylated LPS and core oligosaccharide material (OS), as well as ESIMSn on permethylated dephosphorylated OS, indicated both lex2B mutant strains to express only β-d-Glcp extensions from HepI. This provides strong evidence that Lex2B functions as a galactosyltransferase adding a β-d-Galp to O-4 of GlcI in these strains, indicating that allelic polymorphisms in the lex2B sequence direct alternative functions of the gene product.  相似文献   
152.
目的:探讨神经元型一氧化氮合酶(nNOS)催化产生的一氧化氮(NO)在Ⅱ组代谢型谷氨酸受体(mGluR2/3)介导的脑缺血预处理(CIP)保护机制中的作用。方法:36只永久凝闭椎动脉的SD大鼠随机分为6组(n=6):sham、CIP、损伤性缺血、CIP4-损伤性缺血、MqPG+CIP和MTPG+CIP+损伤性缺血组。采用硫堇染色和免疫组化观察海马CA1区迟发性神经元死亡(DND)和nNOS表达的变化。结果:与Sham组相比,CIP组海马nNOS表达出现一定程度的上调,而损伤性脑缺血组则出现nNOS表达的明显上调,预先给与CIP可一定程度上防止损伤性脑缺血所致的nNOS表达的过度升高。在MTPG4-CIP组,预先侧脑室注射mGluR2/3阻断剂MTPG,可阻断CIP引起的nNOS表达增加,但对神经元的存活无影响。而在MTPG+CIP+损伤性缺血组中,出现大量锥体神经元DND,同时nNOS的表达较MTPG+CIP组明显增加,该增加为损伤性脑缺血所致,而非MTPG的作用。结论:nNOS催化产生的NO作为mGluR2/3的下游分子参与脑缺血预处理过程中mGluR2/3介导的脑缺血耐受的形成。  相似文献   
153.
以流动电位法研究甘氨酸饱和水溶液降温结晶过程。考察了溶液酸度和起始温度对结晶过程中流动电位υ-结晶器温度t曲线的影响。结果表明,甘氨酸饱和溶液在较高起始温度30和35℃下成核能力较差,在较低起始温度20和25℃下成核能力较强。随着甘氨酸饱和溶液酸度的变化,相同起始温度的υ-t曲线表明成核能力有较大差异。溶液酸度为pH=7.0、pH=5.0、pH=4.0的条件下成核作用明显,但低温下成核具有较大的偶然性。等电点附近(pH=6.0)成核能力较差,容易析出不定型固体。运用生长基元理论进行了分析。  相似文献   
154.
The H+/ATP synthase from yeast mitochondria, MF0F1, was purified and reconstituted into liposomes prepared from phosphatidylcholine and phosphatidic acid. Analysis by mass spectrometry revealed the presence of all subunits of the yeast enzyme with the exception of the K-subunit. The MF0F1 liposomes were energized by acid-base transitions (ΔpH) and a K+/valinomycin diffusion potential (Δφ). ATP synthesis was completely abolished by the addition of uncouplers as well as by the inhibitor oligomycin. The rate of ATP synthesis was optimized as a function of various parameters and reached a maximum value (turnover number) of 120 s− 1 at a transmembrane pH difference of 3.2 units (at pHin = 4.8 and pHout = 8.0) and a Δφ of 133 mV (Nernst potential). Functional studies showed that the monomeric MF0F1 was fully active in ATP synthesis. The turnover increased in a sigmoidal way with increasing internal and decreasing external proton concentration. The dependence of the turnover on the phosphate concentration and the dependence of KM on pHout indicated that the substrate for ATP synthesis is the monoanionic phosphate species H2PO4.  相似文献   
155.
The outer membrane usher protein Caf1A of the plague pathogen Yersinia pestis is responsible for the assembly of a major surface antigen, the F1 capsule. The F1 capsule is mainly formed by thin linear polymers of Caf1 (capsular antigen fraction 1) protein subunits. The Caf1A usher promotes polymerization of subunits and secretion of growing polymers to the cell surface. The usher monomer (811 aa, 90.5 kDa) consists of a large transmembrane β-barrel that forms a secretion channel and three soluble domains. The periplasmic N-terminal domain binds chaperone-subunit complexes supplying new subunits for the growing fiber. The middle domain, which is structurally similar to Caf1 and other fimbrial subunits, serves as a plug that regulates the permeability of the usher. Here we describe the identification, characterization, and crystal structure of the Caf1A usher C-terminal domain (Caf1AC). Caf1AC is shown to be a periplasmic domain with a seven-stranded β-barrel fold. Analysis of C-terminal truncation mutants of Caf1A demonstrated that the presence of Caf1AC is crucial for the function of the usher in vivo, but that it is not required for the initial binding of chaperone-subunit complexes to the usher. Two clusters of conserved hydrophobic residues on the surface of Caf1AC were found to be essential for the efficient assembly of surface polymers. These clusters are conserved between the FGL family and the FGS family of chaperone-usher systems.  相似文献   
156.
Leucoanthocyanidin reductase (LAR) catalyzes the NADPH-dependent reduction of 2R,3S,4S-flavan-3,4-diols into 2R,3S-flavan-3-ols, a subfamily of flavonoids that is important for plant survival and for human nutrition. LAR1 from Vitis vinifera has been co-crystallized with or without NADPH and one of its natural products, (+)-catechin. Crystals diffract to a resolution between 1.75 and 2.72 Å. The coenzyme and substrate binding pocket is preformed in the apoprotein and not markedly altered upon NADPH binding. The structure of the abortive ternary complex, determined at a resolution of 2.28 Å, indicates the ordering of a short 310 helix associated with substrate binding and suggests that His122 and Lys140 act as acid-base catalysts. Based on our 3D structures, a two-step catalytic mechanism is proposed, in which a concerted dehydration precedes an NADPH-mediated hydride transfer at C4. The dehydration step involves a Lys-catalyzed deprotonation of the phenolic OH7 through a bridging water molecule and a His-catalyzed protonation of the benzylic hydroxyl at C4. The resulting quinone methide serves as an electrophilic target for hydride transfer at C4. LAR belongs to the short-chain dehydrogenase/reductase superfamily and to the PIP (pinoresinol-lariciresinol reductase, isoflavone reductase, and phenylcoumaran benzylic ether reductase) family. Our data support the concept that all PIP enzymes reduce a quinone methide intermediate and that the major role of the only residue that has been conserved from the short-chain dehydrogenase/reductase catalytic triad (Ser…TyrXXXLys), that is, lysine, is to promote the formation of this intermediate by catalyzing the deprotonation of a phenolic hydroxyl. For some PIP enzymes, this lysine-catalyzed proton abstraction may be sufficient to trigger the extrusion of the leaving group, whereas in LAR, the extrusion of a hydroxide group requires a more sophisticated mechanism of concerted acid-base catalysis that involves histidine and takes advantage of the OH4, OH5, and OH7 substituents of leucoanthocyanidins.  相似文献   
157.
158.
159.
Apramycin is unique in the aminoglycoside family due to its octodiose moiety. However, either the biosynthesis process or the precursors involved are largely unknown. Addition of glycine, as well as serine or threonine, to the Streptomyces tenebrabrius UD2 fermentation medium substantially increases the production of apramycin with little effect on the growth of mycelia, indicat-ing that glycine and/or serine might be involved in the biosynthesis of apramycin. The 13C-NMR analysis of [2-13C] glycine-fed (25% enrichment) apramycin showed that glycine specifically and efficiently incorporated into the only N-CH3 substituent of apramycin on the C7′ of the octodiose moiety. We noticed that the in vivo concentration of S-adenosyl methionine increased in parallel with the addition of glycine, while the addition of methione in the fermentation medium significantly decreased the productivity of apramycin. Therefore, the methyl donor function of glycine is proposed to be involved in the methionine cycle but methionine itself was proposed to inhibit the methylation and methyl transfer processes as previously reported for the case of rapamycin. The 15N NMR spectra of [2-13C,15N]serine labeled apramycin indicated that serine may also act as a limiting precursor contributing to the ―NH2 substituents of apramycin.  相似文献   
160.
Lathyrism is a non-progressive motor neuron disease produced by consumption of the excitatory amino acid, 3-N-oxalyl-L-2,3-diaminopropanoic acid (-ODAP). To learn more about the mechanisms underlying Lathyrism three structural analogs of -ODAP were synthesized. Carboxymethyl-,-diaminopropanoic acid (CMDAP) evoked inward currents which were antagonized by APV (30 M), but not by CNQX (10 M). N-acetyl-,-diaminopropanoic acid (ADAP) evoked no detectable ionic currents but potentiated N-methyl-D-aspartate (NMDA)-activated currents. The potentiation of NMDA currents by ADAP was blocked by 7-chlorokynurenic acid. Carboxymethylcysteine (CMC) did not activate any detectable ionic currents. None of the three -ODAP analogs produced visible symptoms of toxicity in day old chicks when administered for 2–3 consecutive days. Ligand binding studies demonstrated that all the three compounds were effective to in displacing [3H]glutamate. The maximum inhibition was 92% for CMDAP, 61% for ADAP, 65% for CMC and 99% for -ODAP. These data indicate that analogs of -ODAP may interact with glutamate receptors without producing neurotoxicity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号