首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   285篇
  免费   10篇
  国内免费   7篇
  2023年   6篇
  2022年   7篇
  2021年   7篇
  2020年   4篇
  2019年   18篇
  2018年   14篇
  2017年   16篇
  2016年   10篇
  2015年   6篇
  2014年   11篇
  2013年   32篇
  2012年   6篇
  2011年   26篇
  2010年   12篇
  2009年   12篇
  2008年   17篇
  2007年   12篇
  2006年   15篇
  2005年   7篇
  2004年   5篇
  2003年   4篇
  2002年   3篇
  2001年   6篇
  1999年   2篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1993年   1篇
  1992年   1篇
  1991年   4篇
  1985年   4篇
  1984年   8篇
  1983年   4篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
排序方式: 共有302条查询结果,搜索用时 187 毫秒
51.
52.
The drug–serum albumin interaction plays a dominant role in drug efficacy and disposition. The glycation of serum albumin that occurs during diabetes may affect its drug‐binding properties in vivo. In order to evaluate the interactivity characteristics of cyanidin‐3‐O‐glucoside (C3G) with human serum albumin (HSA) and glycated human serum albumin (gHSA), this study was undertaken using multiple spectroscopic techniques and molecular modeling analysis. Time‐resolved fluorescence and the thermodynamic parameters indicated that the quenching mechanism was static quenching, and hydrogen bonding and Van der Waals force were the main forces. The protein fluorescence could be quenched by C3G, whereas the polarity of the fluorophore was not obviously changed. C3G significantly altered the secondary structure of the proteins. Furthermore, the interaction force that existed in the HSA–C3G system was greater than that in the gHSA–C3G system. Fluorescence excitation emission matrix spectra, red edge excitation shift, Fourier transform infrared spectroscopy and circular dichroism spectra provided further evidence that glycation could inhibit the binding between C3G and proteins. In addition, molecular modeling analysis supported the experimental results. The results provided more details for the application of C3G in the treatment of diabetes.  相似文献   
53.
To develop efficient and reliable methods for prediction of serum protein binding of drug leads, the kinetic characteristics for the interactions between selected compounds and human serum albumin and α1-acid glycoprotein have been explored using a surface plasmon resonance biosensor. Conventional methods for quantification of interactions (i.e., using rate constants or affinities determined on the basis of a reasonable mechanistic model) were applicable for only a few of the compounds. The affinity of a primary interaction and the contribution of lower affinity secondary interactions could be estimated for some compounds, but the affinity of many compounds could not be quantified by either of these methods. To have a quantification method that could be used for all compounds, independent of affinity and complexity of interaction mechanisms, the concept of “binding efficiency,” analogous to “catalytic efficiency” used for enzymes, was developed. It allowed the quantification of the binding of compounds interacting with weak affinity and for which saturation is not reached within a concentration range where the compound is soluble or when the influence of interactions with secondary sites makes interpretations difficult. In addition, compounds with large fractional binding can be identified by this strategy and simply quantified relative to reference compounds. This approach will enable ranking and identification of structure–activity relationships of compounds with respect to their serum protein binding profile.  相似文献   
54.
55.
Oxidation processes of lipids are of paramount interest from many viewpoints. For instance, oxidation processes are highly important under in vivo conditions because molecules with regulatory functions are generated by oxidation of lipids or free fatty acids. Additionally, many inflammatory diseases are accompanied by lipid oxidation and, therefore, oxidation products are also useful disease (bio)markers. Thus, there is also considerable interest in methods of (oxidized) lipid analysis.Nowadays, soft ionization mass spectrometric (MS) methods are regularly used to study oxidative lipid modifications due to their high sensitivities and the extreme mass resolution. Although electrospray ionization (ESI) MS is so far most popular, applications of matrix-assisted laser desorption and ionization (MALDI) MS are increasing. This review aims to summarize the so far available data on MALDI analyses of oxidized lipids. In addition to model systems, special attention will be paid to the monitoring of oxidized lipids under in vivo conditions, particularly the oxidation of (human) lipoproteins. It is not the aim of this review to praise MALDI as the “best” method but to provide a critical survey of the advantages and drawbacks of this method.  相似文献   
56.
In the present study a direct detection approach combining size-exclusion chromatography (SEC) and matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight tandem-mass spectrometry (MALDI-QIT-TOF-MS/MS) was applied to investigate the influence of HSA and IgG on LDL oxidation in vitro. SEC analysis showed an increase of protein aggregation during LDL-oxidation that could be essentially suppressed in the presence of HSA. In parallel, lipid peroxidation measured by TBARS assay over 24 h was inhibited by 95–100% in the presence of HSA but only 0–34% by IgG, respectively. MALDI phospholipid profiles showed considerable decrease of signals from PCs containing sn-2 PUFAs (18:2 or 20:4) accompanied by increase of sn-2 LPCs indicating for specific breakdown of PUFA-containing PLs during LDL-oxidation. These effects were nearly 100% inhibited in the presence of HSA but not by IgG, respectively. Among known pro-atherogenic PL species present in human plasma sphingomyelin (SM16:0) was bound in significant amounts to HSA but not IgG after incubation with oxLDL. Moreover, our investigation showed that LPCs containing SAFAs (16:0 or 18:0) were specifically bound to HSA, while those containing PUFAs (18:2 and 18:3) were preferentially associated with IgG. In summary, the presented methodology provides a promising platform for studying lipid–protein interactions in vivo.  相似文献   
57.
The Tyr402His polymorphism of complement factor H (FH) with 20 short complement regulator (SCR) domains is associated with age-related macular degeneration (AMD). How FH contributes to disease pathology is not clear. Both FH and high concentrations of zinc are found in drusen deposits, the key feature of AMD. Heterozygous FH is inhibited by zinc, which causes FH to aggregate. Here, zinc binding to homozygous FH was studied. By analytical ultracentrifugation, large amounts of oligomers were observed with both the native Tyr402 and the AMD-risk His402 homozygous allotypes of FH and both the recombinant SCR-6/8 allotypes with Tyr/His402. X-ray scattering also showed that both FH and SCR-6/8 allotypes strongly aggregated at > 10 μM zinc. The SCR-1/5 and SCR-16/20 fragments were less likely to bind zinc. These observations were supported by bioinformatics predictions. Starting from known zinc binding sites in crystal structures, we predicted 202 putative partial surface zinc binding sites in FH, most of which were in SCR-6. Metal site prediction web servers also suggested that SCR-6 and other domains bind zinc. Predicted SCR-6/8 dimer structures showed that zinc binding sites could be formed at the protein-protein interface that would lead to daisy-chained oligomers. It was concluded that zinc binds weakly to FH at multiple surface locations, most probably within the functionally important SCR-6/8 domains, and this explains why zinc inhibits FH activity. Given the high pathophysiological levels of bioavailable zinc present in subretinal deposits, we discuss how zinc binding to FH may contribute to deposit formation and inflammation associated with AMD.  相似文献   
58.

Background

Sodium octanoate (Oct) and N-acetyl-l-tryptophan (N-AcTrp) are widely used as stabilizers during pasteurization and storage of albumin products. However, exposure to light photo-degrades N-AcTrp with the formation of potentially toxic compounds. Therefore, we have examined the usefulness of N-acetyl-l-methionine (N-AcMet) in comparison with N-AcTrp for long-term stability, including photo stability, of albumin products.

Methods

Recombinant human serum albumin (rHSA) with and without additives was photo-irradiated for 4 weeks. The capability of the different stabilizers to scavenge reactive oxygen species (ROS) was examined by ESR spectrometry. Carbonyl contents were assessed by a spectrophotometric method using fluoresceinamine and Western blotting, whereas the structure of rHSA was examined by SDS-PAGE, far-UV circular dichroism and differential scanning calorimetry. Binding was determined by ultrafiltration.

Results

N-AcMet was found to be a superior ROS scavenger both before and after photo-irradiation. The number of carbonyl groups formed was lowest in the presence of N-AcMet. According to SDS-PAGE, N-AcMet stabilizes the monomeric form of rHSA, whereas N-AcTrp induces degradation of rHSA during photo-irradiation. The decrease in α-helical content of rHSA was the smallest in the presence of Oct, without or with N-AcMet. Photo-irradiation did not affect the denaturation temperature or calorimetric enthalpy of rHSA, when N-AcMet was present.

Conclusion

The weakly bound N-AcMet is a superior protectant of albumin, because it is a better ROS-protector and structural stabilizer than N-AcTrp, and it is probable and also useful for other protein preparations.

General significance

N-AcMet is an effective stabilizer of albumin during photo-irradiation, while N-Ac-Trp promotes photo-oxidative damage to albumin.  相似文献   
59.
Lipid research is challenging owing to the complexity and diversity of the lipidome. Here we review a set of experimental tools developed for the seasoned lipid researcher, as well as, those who are new to the field of lipid research. Novel tools for probing protein–lipid interactions, applications for lipid binding antibodies, enhanced systems for the cellular delivery of lipids, improved visualization of lipid membranes using gold-labeled lipids, and advances in mass spectrometric analysis techniques will be discussed. Because lipid mediators are known to participate in a host of signal transduction and trafficking pathways within the cell, a comprehensive lipid toolbox that aids the science of lipidomics research is essential to better understand the molecular mechanisms of interactions between cellular components. This article is part of a Special Issue entitled Tools to study lipid functions.  相似文献   
60.
The interaction of carbonylcyanide p‐(trifluoromethoxy) phenylhydrazone (FCCP) with human serum albumin (HSA) and human transferrin (HTF) was investigated using multiple spectroscopy, molecular modeling, zeta‐potential and conductometry measurements of aqueous solutions at pH 7.4. The fluorescence, UV/vis and polarization fluorescence spectroscopy data disclosed that the drug–protein complex formation occurred through a remarkable static quenching. Based on the fluorescence quenching, two sets of binding sites with distinct affinities for FCCP existed in the two proteins. Steady‐state and polarization fluorescence analysis showed that there were more affinities between FCCP and HSA than HTF. Far UV‐CD and synchronous fluorescence studies indicated that FCCP induced more structural changes on HSA. The resonance light scattering (RLS) and zeta‐potential measurements suggested that HTF had a greater resistance to drug aggregation, whereas conductometry measurements expressed the presence of free ions improving the resistance of HSA to aggregation. Thermodynamic measurements implied that a combination of electrostatic and hydrophobic forces was involved in the interaction between FCCP with both proteins. The phase diagram plots indicated that the presence of second binding site on HSA and HTF was due to the existence of intermediate structures. Site marker competitive experiments demonstrated that FCCP had two distinct binding sites in HSA which were located in sub‐domains IIA and IIIA and one binding site in the C‐lobe of HTF as confirmed by molecular modeling. The obtained results suggested that both proteins could act as drug carriers, but that the HSA potentially had a higher capacity for delivering FCCP to cancerous tissues. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号