首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   284篇
  免费   11篇
  国内免费   7篇
  302篇
  2023年   6篇
  2022年   7篇
  2021年   7篇
  2020年   4篇
  2019年   18篇
  2018年   14篇
  2017年   16篇
  2016年   10篇
  2015年   6篇
  2014年   11篇
  2013年   32篇
  2012年   6篇
  2011年   26篇
  2010年   12篇
  2009年   12篇
  2008年   17篇
  2007年   12篇
  2006年   15篇
  2005年   7篇
  2004年   5篇
  2003年   4篇
  2002年   3篇
  2001年   6篇
  1999年   2篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1993年   1篇
  1992年   1篇
  1991年   4篇
  1985年   4篇
  1984年   8篇
  1983年   4篇
  1982年   2篇
  1981年   3篇
  1980年   2篇
  1979年   1篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
排序方式: 共有302条查询结果,搜索用时 15 毫秒
101.
This study is the first report on the effectiveness and specificity of alpha-acarviosinyl-(1-->4)-alpha-D-glucopyranosyl-(1-->6)-D-glucopyranosylidene-spiro-thiohydantoin (PTS-G-TH) inhibitor on the 2-chloro-4-nitrophenyl-4-O-beta-D-galactopyranosyl-maltoside (GalG2CNP) and amylose hydrolysis catalysed by human salivary alpha-amylase (HSA). Synthesis of PTS-G-TH was carried out by transglycosylation using acarbose as donor and glucopyranosylidene-spiro-thiohydantoin (G-TH) as acceptor. This new compound was found to be a much more efficient HSA inhibitor than G-TH. The inhibition is a mixed-noncompetitive type on both substrates and only one molecule of inhibitor binds to the enzyme. Kinetic constants calculated from secondary plots are in micromolar range. Values of K(EI) and K(ESI) are very similar in the presence of GalG2CNP substrate; 0.19 and 0.24 microM, respectively. Significant difference can be found for K(EI) and K(ESI) using amylose as substrate; 8.45 and 0.5 microM, respectively. These values indicate that inhibition is rather uncompetitive than competitive related to amylose hydrolysis.  相似文献   
102.

Background

Serum albumin binds avidly to heme to form heme–serum albumin complex, also called methemalbumin, and this binding is thought to protect against the potentially toxic effects of heme. However, the mechanism of detoxification has not been fully elucidated.

Methods

SDS-PAGE and Western blot were used to determine the efficiency of methemalbumin on catalyzing protein carbonylation and nitration. HPLC was used to test the formation of heme to protein cross-linked methemalbumin.

Results

The peroxidase activity of heme increased upon human serum albumin (HSA) binding. Methemalbumin showed higher efficiency in catalyzing tyrosine oxidation than free heme in the presence of H2O2. Methemalbumin catalyzed self-nitration and significantly promoted the nitration of tyrosine in coexistent protein, but decreased the carbonylation of coexistent protein compared with heme. The heme to protein cross-linked form of methemalbumin suggested that HSA trapped the free radical accompanied by the formation of ferryl heme. When tyrosine residues in HSA were modified by iodination, HSA lost of protection effect on protein carbonylation. The low concentration of glutathione could effectively inhibit tyrosine nitration, but had no effect on protein carbonylation.

Conclusion

HSA protects against the toxic effect of heme by transferring the free radical to tyrosine residues in HSA, therefore protecting surrounding proteins from irreversible oxidation, rather than by direct inhibiting the peroxidase activity. The increased tyrosine radicals can be reduced by endogenic antioxidants such as GSH.

General significance

This investigation indicated the important role of tyrosine residues in heme detoxification by HSA and suggested a possible novel mechanism.  相似文献   
103.
Tamoxifen is extensively metabolized, and several metabolites have been detected in human serum. The aim of this study was to examine the interaction of human serum albumin (HSA) with tamoxifen and its metabolites 4-hydroxytamoxifen and endoxifen at physiological conditions, using constant protein concentration and various drug contents. FTIR, UV-Visible, CD and fluorescence spectroscopic methods as well as molecular modeling were used to analyse drug binding mode, the binding constant and the effects of drug complexation on HSA stability and conformation. Structural analysis showed that tamoxifen and its metabolites bound HSA via both hydrophobic and hydrophilic interactions with overall binding constants of Ktam = 1.8 (±0.2) × 104 M−1, K4-hydroxytam = 1.8 (±0.4) × 104 M−1 and Kendox = 2.0 (±0.5) × 104 M−1. The number of bound drugs per protein is 1.2 (tamoxifen), 1.7 (4-hydroxitamoxifen) and 1.0 (endoxifen). Structural modeling showed the participation of several amino acid residues in drug-HSA complexation, with extended H-bonding network. HSA conformation was altered by tamoxifen and its metabolites with a major reduction of α-helix and an increase in β-sheet, random coil and turn structures, indicating a partial protein unfolding. Our results suggest that serum albumins can act as carrier proteins for tamoxifen and its metabolites in delivering them to target tissues.  相似文献   
104.

Background

Serum albumin is the major protein component of blood plasma and is responsible for the circulatory transport of a range of small molecules that include fatty acids, hormones, metal ions and drugs. Studies examining the ligand-binding properties of albumin make up a large proportion of the literature. However, many of these studies do not address the fact that albumin carries multiple ligands (including metal ions) simultaneously in vivo. Thus the binding of a particular ligand may influence both the affinity and dynamics of albumin interactions with another.

Scope of review

Here we review the Zn2 + and fatty acid transport properties of albumin and highlight an important interplay that exists between them. Also the impact of this dynamic interaction upon the distribution of plasma Zn2 +, its effect upon cellular Zn2 + uptake and its importance in the diagnosis of myocardial ischemia are considered.

Major conclusions

We previously identified the major binding site for Zn2 + on albumin. Furthermore, we revealed that Zn2 +-binding at this site and fatty acid-binding at the FA2 site are interdependent. This suggests that the binding of fatty acids to albumin may serve as an allosteric switch to modulate Zn2 +-binding to albumin in blood plasma.

General significance

Fatty acid levels in the blood are dynamic and chronic elevation of plasma fatty acid levels is associated with some metabolic disorders such as cardiovascular disease and diabetes. Since the binding of Zn2 + to albumin is important for the control of circulatory/cellular Zn2 + dynamics, this relationship is likely to have important physiological and pathological implications. This article is part of a Special Issue entitled Serum Albumin.  相似文献   
105.
The binding of 5-iodouridine with human serum albumin was investigated under the simulative physiological conditions. The fluorescence spectra in combination with UV absorption and modeling method were used in the present work. A strong fluorescence quenching reaction of 5-iodouridine to HSA was observed and the quenching mechanism was suggested as static quenching procedure. The binding constants (K) at different temperatures as well as thermodynamic parameters, enthalpy change (ΔH) and entropy change (ΔS), were calculated. It showed that the hydrophobic interaction was a predominant intermolecular force in order to stabilize the complex, which was in agreement with the result of modeling study. The binding distance between 5-iodouridine and HSA was calculated on the basis of the theory of Föster energy transfer. The effects of other ions on the binding constants were also discussed. Synchronous fluorescence spectroscopy (SFS) technique were successfully applied to determine protein in the biological samples.  相似文献   
106.
糖尿病是世界性疾病,更是严重的公共卫生问题。世界卫生组织(World Health Organization, WHO)将糖化血红蛋白A1c(glycated hemoglobin A1c,HbA1c)确定为糖尿病诊断标准,这对于糖尿病的诊断、监测和治疗具有重要临床意义。近年来,国内外开展了大量有关HbA1c实验室检测方法与标准化的相关技术研究工作,形成了一系列检测方法和标准体系,取得了一定成果。介绍了具有代表性的HbA1c实验室检测技术及国内外HbA1c标准化研究进程,并对当前存在的技术难题进行了分析和展望,以期有助于临床实验室选择合适的检测方法,并推进我国HbA1c标准化工作的发展。  相似文献   
107.
To perform biological evaluations of newly-designed Pt(II) and Pd(II) complexes, the present study was conducted with targeted protein human serum albumin (HSA) and HCT116 cell line as model of human colorectal carcinoma. The binding of Pt(II) and Pd(II) complexes to HSA was analyzed using fluorescence spectroscopy and molecular docking. The thermal stability and alterations in the secondary structure of HSA in the presence of Pt(II) and Pd(II) complexes were investigated using the thermal denaturation method and circular dichroism (CD) spectroscopy. The cytotoxicity of the Pt(II) and Pd(II) complexes was studied against the HCT116 cell line using MTT assay. The binding analysis revealed that the fluorescence findings were well in agreement with docking results such that there is only one binding site for each complex on HSA. Binding constants of 8.7?×?103 M?1, 2.65?×?103 M?1, 0.3?×?103 M?1, and 4.4?×?103 M?1 were determined for Pd(II) and Pt(II) complexes (I–IV) at temperature of 25?°C, respectively. Also, binding constants of 1.9?×?103 M?1, 15.17?×?103 M?1, 1.9?×?103 M?1, and 13.1?×?103 M?1 were determined for Pd(II) and Pt(II) complexes (I–IV) at temperature of 37?°C, respectively. The results of CD and thermal denaturation showed that the molecular structure of HSA affected by interaction with Pt(II) and Pd(II) complexes is stable. Cytotoxicity studies represented the growth suppression effect of the Pt(II) and Pd(II) complexes toward the human colorectal carcinoma cell line. Therefore, the results suggest that the new designed Pt(II) and Pd(II) complexes are well promising candidates for use in cancer treatment, particularly for human colorectal cancer.

Communicated by Ramaswamy H. Sarma  相似文献   

108.
Two inter-related challenges must be overcome to develop a recombinant human serum albumin process. One is purity; the other is cost. Regarding cost, our goal is to produce recombinant human serum albumin at least as economically as plasma derived human serum albumin. To control production costs, maximum quantities of albumin must be produced from minimum volumes of cell culture, followed by high efficiency, high-yield purification methods. By introducing STREAMLINE technology, we have improved productivity by roughly 50% in terms of processing time and 45% in terms of yield. Furthermore, the life time of the gel and column are very long. After more than 1000 process cycles, performance remained unchanged.  相似文献   
109.
Environmental enrichment (EE) is a housing environment for mice that boosts mental and physical health compared to standard laboratory housing. Our recent studies demonstrate that environmental enrichment decreases adiposity, increases energy expenditure, resists diet induced obesity, and causes cancer remission and inhibition in mice. EE typically consists of larger living space, a variety of ‘toys’ to interact with, running wheels, and can include a number of other novel environmental changes. All of this fosters a more complex social engagement, cognitive and physical stimulations. Importantly, the toy location and type of toy is changed regularly, which encourages the mice to adapt to a frequently changing and novel environment. Many variables can be manipulated in EE to promote health effects in mice. Thus these approaches are difficult to control and must be properly managed to successfully replicate the associated phenotypes. Therefore, the goal of this video is to demonstrate how EE is properly set up and maintained to assure a complex, challenging, and controlled environment so that other researchers can easily reproduce the protective effects of EE against obesity and cancer.  相似文献   
110.
Increased protein glycation has been mechanistically linked to accelerated vascular pathobiology in diabetes. To test the influence of protein modified by Amadori glucose adducts on vascular cell biology, we examined the effect of glycated albumin on replicative capacity and basement membrane collagen production by aortic endothelial cells in culture. Relative to carbohydrate-free albumin, which supported cell proliferation and Type IV collagen synthesis, glycated albumin significantly inhibited3H-thymidine incorporation and Type IV collagen production. The glycated albumin-induced effects were prevented by monoclonal antibodies (A717) that specifically react with Amadori-modified albumin, but not by IgG that was unreactive with glycated albumin. A717 had no effect on thymidine incorporation or collagen synthesis by cells cultured in the presence of nonglycated albumin. The findings indicate that the interaction of glycated albumin with endothelial cells, which have been shown to display dose-responsive, saturable receptors, limits cell replication and triggers maladaptive biosynthetic programs, which may contribute to degenerative macrovascular disease in diabetes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号