首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2604篇
  免费   95篇
  国内免费   101篇
  2023年   17篇
  2022年   36篇
  2021年   38篇
  2020年   30篇
  2019年   40篇
  2018年   56篇
  2017年   36篇
  2016年   40篇
  2015年   48篇
  2014年   104篇
  2013年   144篇
  2012年   73篇
  2011年   112篇
  2010年   81篇
  2009年   95篇
  2008年   100篇
  2007年   97篇
  2006年   113篇
  2005年   91篇
  2004年   81篇
  2003年   78篇
  2002年   78篇
  2001年   63篇
  2000年   56篇
  1999年   60篇
  1998年   65篇
  1997年   62篇
  1996年   68篇
  1995年   56篇
  1994年   72篇
  1993年   47篇
  1992年   53篇
  1991年   41篇
  1990年   39篇
  1989年   61篇
  1988年   55篇
  1987年   42篇
  1986年   36篇
  1985年   52篇
  1984年   57篇
  1983年   30篇
  1982年   47篇
  1981年   44篇
  1980年   30篇
  1979年   15篇
  1978年   12篇
  1977年   13篇
  1976年   9篇
  1975年   7篇
  1973年   10篇
排序方式: 共有2800条查询结果,搜索用时 31 毫秒
951.
Lysed chloroplasts from several higher plants synthesized ent-kaurene from copalyl pyrophosphate but not from geranylgeranyl pyrophosphate. The copalyl pyrophosphate transforming activity (so-called B activity of kaurene synthetase) was relatively stable in plastid lysates from Pisum sativum but remarkably unstable in similar preparations of Hordeum vulgare. The bulk of the B activity of kaurene synthetase appeared to reside in the stroma of plastids from P. sativum but required the presence of plastid membranes for maximum activity.  相似文献   
952.
The folylpolyglutamate synthetase (FPGS) activities of Neurospora crassa, wild type (FGSC 853) and two polyglutamate-deficient mutants, met-6,35809 (FGSC 1330) and mac, 65108 (FGSC 3609), were examined after growth in defined media. Extracts of the wild type produced H4PteGlu6 (60 %), H4PteGlu3 (35 %) and H4PteGlu2 (15 %). Met-6 extracts formed H4PteGlu2 but lacked the ability to utilize H4PteGlu4 or H4PteGlu5. The mac mutant failed to catalyse glutamate addition to H4PteGlu but H4PteGlu2 was an effective substrate for tri- and hexaglutamate synthesis. These polyglutamates were also formed by reaction systems containing mixtures of met-6 and mac protein or heterokaryon protein derived from mycelial fusions of met-6 and mac. Extract fractionations and heat treatments provided evidence for more than one FPGS activity in the wild type. A mitochondrial FPGS catalysed the H4PteGlu2 → H4PteGlu3 reaction but a cytosolic fraction synthesized di-, tri- and hexaglutamates when incubated with H4PteGlu and glutamate. The latter system contained a temperature-sensitive diglutamate-forming activity and a relatively stable H4PteGlu2 → H4PteGlu6 activity. Polyglutamate synthesis in N. crassa appears to involve more than one step, H4PteGlu → H4PteGlu2 followed by H4PteGlu2 → H4PteGlu6, in addition to the mitochondrial activity. These partial activities are lacking in mac and met-6 respectively. Consequently, these mutants are unable to form the folylhexaglutamates that predominate the folate pool of the wild type.  相似文献   
953.
We developed a highly accurate method to predict polyketide (PK) and nonribosomal peptide (NRP) structures encoded in microbial genomes. PKs/NRPs are polymers of carbonyl/peptidyl chains synthesized by polyketide synthases (PKS) and nonribosomal peptide synthetases (NRPS). We analyzed domain sequences corresponding to specific substrates and physical interactions between PKSs/NRPSs in order to predict which substrates (carbonyl/peptidyl units) are selected and assembled into highly ordered chemical structures. The predicted PKs/NRPs were represented as the sequences of carbonyl/peptidyl units to extract the structural motifs efficiently. We applied our method to 4529 PKSs/NRPSs and found 619 PKs/NRPs. We also collected 1449 PKs/NRPs whose chemical structures have been determined experimentally. The structural sequences were compared using the Smith-Waterman algorithm, and clustered into 271 clusters. From the compound clusters, we extracted 33 structural motifs that are significantly related with their bioactivities. We used the structural motifs to infer functions of 13 novel PKs/NRPs clusters produced by Pseudomonas spp. and Burkholderia spp. and found a putative virulence factor. The integrative analysis of genomic and chemical information given here will provide a strategy to predict the chemical structures, the biosynthetic pathways, and the biological activities of PKs/NRPs, which is useful for the rational design of novel PKs/NRPs.  相似文献   
954.
Aminoacylation and editing by leucyl-tRNA synthetases (LeuRS) require migration of the tRNA acceptor stem end between the canonical aminoacylation core and a separate domain called CP1 that is responsible for amino acid editing. The LeuRS CP1 domain can also support group I intron RNA splicing in the yeast mitochondria, although splicing-sensitive sites have been identified on the main body. The RDW peptide, a highly conserved peptide within an RDW-containing motif, resides near one of the beta-strand linkers that connects the main body to the CP1 domain. We hypothesized that the RDW peptide was important for interactions of one or more of the LeuRS-RNA complexes. An assortment of X-ray crystallography structures suggests that the RDW peptide is dynamic and forms unique sets of interactions with the aminoacylation and editing complexes. Mutational analysis identified specific sites within the RDW peptide that failed to support protein synthesis activity in complementation experiments. In vitro enzymatic investigations of mutations at Trp445, Arg449, and Arg451 in yeast mitochondrial LeuRS suggested that these sites within the RDW peptide are critical to the aminoacylation complex, but impacted amino acid editing activity to a much less extent. We propose that these highly conserved sites primarily influence productive tRNA interactions in the aminoacylation complex.  相似文献   
955.
In the ancient organisms, methanogenic archaea, lacking the canonical cysteinyl-tRNA synthetase, Cys-tRNA(Cys) is produced by an indirect pathway, in which O-phosphoseryl-tRNA synthetase ligates O-phosphoserine (Sep) to tRNA(Cys) and Sep-tRNA:Cys-tRNA synthase (SepCysS) converts Sep-tRNA(Cys) to Cys-tRNA(Cys). In this study, the crystal structure of SepCysS from Archaeoglobus fulgidus has been determined at 2.4 A resolution. SepCysS forms a dimer, composed of monomers bearing large and small domains. The large domain harbors the seven-stranded beta-sheet, which is typical of the pyridoxal 5'-phosphate (PLP)-dependent enzymes. In the active site, which is located near the dimer interface, PLP is covalently bound to the side-chain of the conserved Lys209. In the proximity of PLP, a sulfate ion is bound by the side-chains of the conserved Arg79, His103, and Tyr104 residues. The active site is located deep within the large, basic cleft to accommodate Sep-tRNA(Cys). On the basis of the surface electrostatic potential, the amino acid residue conservation mapping, the position of the bound sulfate ion, and the substrate amino acid binding manner in other PLP-dependent enzymes, a binding model of Sep-tRNA(Cys) to SepCysS was constructed. One of the three strictly conserved Cys residues (Cys39, Cys42, or Cys247), of one subunit may play a crucial role in the catalysis in the active site of the other subunit.  相似文献   
956.
The liver acinus displays a physiological periportal to perivenous oxygen gradient. This gradient was implicated to use reactive oxygen species (ROS) as mediators for the zonal gene expression. Mitochondria use oxygen and produce ROS, therefore they may contribute to the zonation of gene expression. To further elucidate this, we used the Cre-loxP system to generate a hepatocyte-specific null mutation of the mitochondrial antioxidant enzyme manganese superoxide dismutase (MnSOD) in mice. We found that ROS levels were enhanced in livers of MnSOD(-/-) mice which were reduced in size and displayed signs of liver failure such as intracellular protein droplets, increased apoptotic bodies and Bax levels as well as multinuclear hepatocytes. Further, the zonation of glutamine synthetase, glucokinase and phosphoenolpyruvate carboxykinase was no longer preserved. We conclude that deficiency of mitochondrial MnSOD initiates a dysregulation of zonated gene expression in liver.  相似文献   
957.
Glutathione (GSH) is synthesized by gamma-glutamylcysteine synthetase (gamma-GCS) and glutathione synthetase (GS) in living organisms. Recently, bifunctional fusion protein, termed gamma-GCS-GS catalyzing both gamma-GCS and GS reactions from gram-positive firmicutes Streptococcus agalactiae, has been reported. We revealed that in the gamma-GCS activity, S. agalactiae gamma-GCS-GS had different substrate specificities from those of Escherichia coli gamma-GCS. Furthermore, S. agalactiae gamma-GCS-GS synthesized several kinds of gamma-glutamyltripeptide, gamma-Glu-X(aa)-Gly, from free three amino acids. In Clostridium acetobutylicum, the genes encoding gamma-GCS and putative GS were found to be immediately adjacent by BLAST search, and had amino acid sequence homology with S. agalactiae gamma-GCS-GS, respectively. We confirmed that the proteins expressed from each gene showed gamma-GCS and GS activity, respectively. C. acetobutylicum GS had broad substrate specificities and synthesized several kinds of gamma-glutamyltripeptide, gamma-Glu-Cys-X(aa). Whereas the substrate specificities of gamma-GCS domain protein and GS domain protein of S. agalactiae gamma-GCS-GS were the same as those of S. agalactiae gamma-GCS-GS.  相似文献   
958.
Glutathione peroxidase 3 (Gpx3) is ubiquitously expressed and is important antioxidant enzyme in yeast. It modulates the activities of redox-sensitive thiol proteins, particularly those involved in signal transduction pathway and protein translocation. Through immunoprecipitation/two-dimensional gel electrophoresis (IP-2DE), MALDI-TOF mass spectrometry, and a pull down assay, we found glutamine synthetase (GS; EC 6.3.1.2) as a candidate interacting protein with Gpx3. GS is a key enzyme in nitrogen metabolism and ammonium assimilation. It has been known that GS is non-enzymatically cleaved by ROS generated by MFO (thiol/ Fe(3+)/O(2) mixed-function oxidase) system. In this study, it is demonstrated that GS interacts with Gpx3 through its catalytic domain both in vivo and in vitro regardless of redox state. In addition, Gpx3 helps to protect GS from inactivation and degradation via oxidative stress in an activity-independent manner. Based on the results, it is suggested that Gpx3 protects GS from non-enzymatic proteolysis, thereby contributing to cell homeostasis when cell is exposed to oxidative stress.  相似文献   
959.
Cader MZ  Ren J  James PA  Bird LE  Talbot K  Stammers DK 《FEBS letters》2007,581(16):2959-2964
Dominant mutations in the ubiquitous enzyme glycyl-tRNA synthetase (GlyRS), including S581L, lead to motor nerve degeneration. We have determined crystal structures of wildtype and S581L-mutant human GlyRS. The S581L mutation is approximately 50A from the active site, and yet gives reduced aminoacylation activity. The overall structures of wildtype and S581L-GlyRS, including the active site, are very similar. However, residues 567-575 of the anticodon-binding domain shift position and in turn could indirectly affect glycine binding via the tRNA or alternatively inhibit conformational changes. Reduced enzyme activity may underlie neuronal degeneration, although a dominant-negative effect is more likely in this autosomal dominant disorder.  相似文献   
960.
1H MRS signals of glutathione and of free glutamate were examined in samples from cultured tumour cells, namely MCF-7 from mammary carcinoma and TG98 from malignant glioma, with the aim of relating signal intensities to aspects of GSH metabolism. Spectra of cells harvested at different cell densities suggest that GSH and glu signal intensities are related to cell density and proliferation and their ratio is dependent on the activity of the gamma-glutamyl cysteine synthetase. The hypothesis is confirmed by experiments performed on cells treated with buthionine sulfoximine that inhibits the enzyme activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号