首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2604篇
  免费   95篇
  国内免费   101篇
  2023年   17篇
  2022年   36篇
  2021年   38篇
  2020年   30篇
  2019年   40篇
  2018年   56篇
  2017年   36篇
  2016年   40篇
  2015年   48篇
  2014年   104篇
  2013年   144篇
  2012年   73篇
  2011年   112篇
  2010年   81篇
  2009年   95篇
  2008年   100篇
  2007年   97篇
  2006年   113篇
  2005年   91篇
  2004年   81篇
  2003年   78篇
  2002年   78篇
  2001年   63篇
  2000年   56篇
  1999年   60篇
  1998年   65篇
  1997年   62篇
  1996年   68篇
  1995年   56篇
  1994年   72篇
  1993年   47篇
  1992年   53篇
  1991年   41篇
  1990年   39篇
  1989年   61篇
  1988年   55篇
  1987年   42篇
  1986年   36篇
  1985年   52篇
  1984年   57篇
  1983年   30篇
  1982年   47篇
  1981年   44篇
  1980年   30篇
  1979年   15篇
  1978年   12篇
  1977年   13篇
  1976年   9篇
  1975年   7篇
  1973年   10篇
排序方式: 共有2800条查询结果,搜索用时 15 毫秒
931.
We have previously shown that mitochondrial membrane potential disruption is involved in mechanisms underlying differential vulnerabilities to the excitotoxicity mediated by N-methyl-d-aspartate (NMDA) receptors between primary cultured neurons prepared from rat cortex and hippocampus. To further elucidate the role of mitochondria in the excitotoxicity after activation of NMDA receptors, neurons were loaded with the fluorescent dye calcein diffusible in the cytoplasm and organelles for determination of the activity of mitochondrial permeability transition pore (mPTP) responsible for the leakage of different mitochondrial molecules. The addition of CoCl2 similarly quenched the intracellular fluorescence except mitochondria in both cultured neurons, while further addition of NMDA led to a leakage of the dye into the cytoplasm in hippocampal neurons only. An mPTP inhibitor prevented the NMDA-induced loss of viability in hippocampal neurons, while an activator of mPTP induced a similarly potent loss of viability in cortical and hippocampal neurons. Although NMDA was more effective in increasing rhodamine-2 fluorescence as a mitochondrial calcium indicator in hippocampal than cortical neurons, a mitochondrial calcium uniporter inhibitor significantly prevented the NMDA-induced loss of viability in hippocampal neurons. Expression of mRNA was significantly higher for the putative uniporter uncoupling protein-2 in hippocampal than cortical neurons. These results suggest that mitochondrial calcium uniporter would be at least in part responsible for the NMDA neurotoxicity through a mechanism relevant to promotion of mPTP orchestration in hippocampal neurons.  相似文献   
932.
Perennial ryegrass (Lolium perenne) is a high quality forage and turf grass mainly due to its excellent nutritive values and rapid establishment rate. However, this species has limited ability to perform in harsh winter climates. Though winter hardiness is a complex trait, it is commonly agreed that frost tolerance (FT) is its main component. Species growing in temperate regions can acquire FT through exposure to low, non-lethal temperatures, a phenomenon known as cold acclimation (CA). The research on molecular basis of FT has been performed on the model plants, but they are not well adapted to extreme winter climates. Thus, the mechanisms of cell response to low temperature in winter crops and agronomically important perennial grasses have yet to be revealed. Here, two L. perenne plants with contrasting levels of FT, high frost tolerant (HFT) and low frost tolerant (LFT) plants, were selected for comparative proteomic research. The work focused on analyses of leaf protein accumulation before and after 2, 8, 26 h, and 3, 5, 7, 14 and 21 days of CA, using a high-throughput two-dimensional electrophoresis, and on the identification of proteins which were accumulated differentially between the selected plants by the application of mass spectrometry (MS). Analyses of 580 protein profiles revealed a total of 42 (7.2%) spots that showed at a minimum of 1.5-fold differences in protein abundance, at a minimum of at one time point of CA between HFT and LFT genotypes. It was shown that significant differences in profiles of protein accumulation between the analyzed plants appeared most often on the 5th (18 proteins) and the 7th (19 proteins) day of CA. The proteins derived from 35 (83.3%) spots were successfully identified by the use of MS and chloroplast proteins were shown to be the major group selected as differentially accumulated during CA. The functions of the identified proteins and their probable influence on the level of FT in L. perenne are discussed.  相似文献   
933.
This study revealed that cytosolic aconitase (ACO, EC 4.2.1.3) and isocitrate lyase (ICL, EC 4.1.3.1, marker of the glyoxylate cycle) are active in germinating protein seeds of yellow lupine. The glyoxylate cycle seems to function not only in the storage tissues of food-storage organs, but also in embryonic tissue of growing embryo axes. Sucrose (60 mM) added to the medium of in vitro culture of embryo axes and cotyledons decreased activity of lipase (LIP, EC 3.1.1.3) and activity of glutamate dehydrogenase (NADH-GDH, EC 1.4.1.2). The opposite effect was caused by sucrose on activity of cytosolic ACO, ICL as well as NADP+-dependent (EC 1.1.1.42) and NAD+-dependent (EC 1.1.1.41) isocitrate dehydrogenase (NADP-IDH and NAD-IDH, respectively); activity of these enzymes was clearly stimulated by sucrose. Changes in the activity of LIP, ACO, NADP-IDH, and NAD-IDH caused by sucrose were based on modifications in gene expression because corresponding changes in the enzyme activities and in the mRNA levels were observed. The significance of cytosolic ACO and NADP-IDH in carbon flow from storage lipid to amino acids, as well as the peculiar features of storage lipid breakdown during germination of lupine seeds are discussed.  相似文献   
934.
Somatic embryogenesis in pumpkin can be induced on auxin-containing medium and also on hormone-free medium containing 1 mM ammonium (NH4+) as the sole source of nitrogen. Growth of NH4+-induced embryogenic tissue was slow and caused considerable acidification of the culture medium. Small spherical cells with dense cytoplasma formed proembryogenic cell clusters that could not develop into late stage embryos. Buffering of NH4+ medium with 25 mM 2-(N-morpholino)-ethane-sulfonic acid enhanced tissue proliferation, but no further differentiation was observed. Later stage embryos developed only after re-supply of nitrogen in form of nitrate or l-glutamine. Effects of nitrogen status and pH of culture media on ammonium assimilation were analyzed by following the activity of glutamine synthetase (GS) in relation to phenylalanine ammonia-lyase (PAL). Increased activity of GS and PAL in NH4+ induced tissue coincided with significantly higher activity of stress-related enzymes superoxide dismutase (SOD) and soluble peroxidase (POD), indicating oxidative stress response of embryogenic tissue to NH4+ as the sole source of nitrogen. In addition, considerable increase was observed in callose accumulation and esterase activity, the early markers of somatic embryogenesis. Activity of stress-related enzymes decreased after the re-supply of nitrate (20 mM) or Gln (10 mM) in combination with NH4+ (1 mM), which subsequently triggered globular embryo development. Together, these results suggest that stress responses, as affected by nitrogen supply, contribute to the regulation of embryogenic competence in pumpkin.  相似文献   
935.
936.
937.
Holocarboxylase synthetase (HCS) mediates the binding of biotin to lysine (K) residues in histones H2A, H3 and H4; HCS knockdown disturbs gene regulation and decreases stress resistance and lifespan in eukaryotes. We tested the hypothesis that HCS interacts physically with histone H3 for subsequent biotinylation. Co-immunoprecipitation experiments were conducted and provided evidence that HCS co-localizes with histone H3 in human cells; physical interactions between HCS and H3 were confirmed using limited proteolysis assays. Yeast two-hybrid (Y2H) studies revealed that the N-terminal and C-terminal domains in HCS participate in H3 binding. Recombinant human HCS was produced and exhibited biological activity, as evidenced by biotinylation of its known substrate, recombinant p67. Recombinant histone H3.2 and synthetic H3-based peptides were also good targets for biotinylation by recombinant HCS (rHCS) in vitro, based on tracing histone-bound biotin with [3H]biotin, streptavidin and anti-biotin antibody. Biotinylation site-specific antibodies were generated and revealed that both K9 and K18 in H3 were biotinylated by HCS. Collectively, these studies provide conclusive evidence that HCS interacts directly with histone H3, causing biotinylation of K9 and K18. We speculate that the targeting of HCS to distinct regions in human chromatin is mediated by DNA sequence, biotin, RNA, epigenetic marks or chromatin proteins.  相似文献   
938.
Peroxynitrite (PN; ONOO) and its reactive oxygen precursor superoxide (SO; O2•−) are critically important in the development of pain of several etiologies including pain associated with chronic use of opiates such as morphine (also known as opiate-induced hyperalgesia and antinociceptive tolerance). This is now an emerging field in which considerable progress has been made in terms of understanding the relative contributions of SO, PN, and nitroxidative stress in pain signaling at the molecular and biochemical levels. Aggressive research in this area is poised to provide the pharmacological basis for development of novel nonnarcotic analgesics that are based upon the unique ability to selectively eliminate SO and/or PN. As we have a better understanding of the roles of SO and PN in pathophysiological settings, targeting PN may be a better therapeutic strategy than targeting SO. This is because, unlike PN, which has no currently known beneficial role, SO may play a significant role in learning and memory [1]. Thus, the best approach may be to spare SO while directly targeting its downstream product, PN. Over the past 15 years, our team has spearheaded research concerning the roles of SO and PN in pain and these results are currently leading to the development of solid therapeutic strategies in this important area.  相似文献   
939.
Lipid peroxidation is a complex process involving the interaction of oxygen-derived free radicals with polyunsaturated fatty acids, resulting in a variety of highly reactive electrophilic aldehydes. Since 1975, lipid peroxidation has been extensively studied in a variety of organisms. As neurodegenerative diseases became better understood, research establishing a link between this form of oxidative damage, neurodegeneration, and disease has provided a wealth of knowledge to the scientific community. With the advent of proteomics in 1995, the identification of biomarkers for neurodegenerative disorders became of paramount importance to better understand disease pathogenesis and develop potential therapeutic strategies. This review focuses on the relationship between lipid peroxidation and neurodegenerative diseases. It also demonstrates how findings in current research support the common themes of altered energy metabolism and mitochondrial dysfunction in neurodegenerative disorders.  相似文献   
940.
Aminoacyl-tRNA synthetases (aaRSs) play an integral role in protein synthesis, functioning to attach the correct amino acid with its cognate tRNA molecule. AaRSs are known to associate into higher-order multi-aminoacyl-tRNA synthetase complexes (MSC) involved in archaeal and eukaryotic translation, although the precise biological role remains largely unknown. To gain further insights into archaeal MSCs, possible protein-protein interactions with the atypical Methanothermobacter thermautotrophicus seryl-tRNA synthetase (MtSerRS) were investigated. Yeast two-hybrid analysis revealed arginyl-tRNA synthetase (MtArgRS) as an interacting partner of MtSerRS. Surface plasmon resonance confirmed stable complex formation, with a dissociation constant (K(D)) of 250 nM. Formation of the MtSerRS·MtArgRS complex was further supported by the ability of GST-MtArgRS to co-purify MtSerRS and by coelution of the two enzymes during gel filtration chromatography. The MtSerRS·MtArgRS complex also contained tRNA(Arg), consistent with the existence of a stable ribonucleoprotein complex active in aminoacylation. Steady-state kinetic analyses revealed that addition of MtArgRS to MtSerRS led to an almost 4-fold increase in the catalytic efficiency of serine attachment to tRNA, but had no effect on the activity of MtArgRS. Further, the most pronounced improvements in the aminoacylation activity of MtSerRS induced by MtArgRS were observed under conditions of elevated temperature and osmolarity. These data indicate that formation of a complex between MtSerRS and MtArgRS provides a means by which methanogenic archaea can optimize an early step in translation under a wide range of extreme environmental conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号