首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   439篇
  免费   11篇
  国内免费   13篇
  2023年   6篇
  2022年   7篇
  2021年   7篇
  2020年   6篇
  2019年   8篇
  2018年   13篇
  2017年   5篇
  2016年   5篇
  2015年   5篇
  2014年   21篇
  2013年   40篇
  2012年   23篇
  2011年   21篇
  2010年   9篇
  2009年   9篇
  2008年   11篇
  2007年   17篇
  2006年   13篇
  2005年   21篇
  2004年   14篇
  2003年   13篇
  2002年   6篇
  2001年   11篇
  2000年   5篇
  1999年   7篇
  1998年   5篇
  1997年   9篇
  1996年   7篇
  1995年   13篇
  1994年   5篇
  1993年   8篇
  1992年   6篇
  1990年   4篇
  1989年   5篇
  1988年   4篇
  1987年   5篇
  1985年   7篇
  1984年   12篇
  1983年   6篇
  1982年   8篇
  1981年   6篇
  1980年   9篇
  1979年   8篇
  1978年   6篇
  1976年   3篇
  1975年   6篇
  1974年   6篇
  1973年   2篇
  1972年   2篇
  1971年   2篇
排序方式: 共有463条查询结果,搜索用时 15 毫秒
81.
Chemopreventive potential of Acacia nilotica bark extract (ANBE) against single intraperitoneal injection of N-nitrosodiethylamine (NDEA, 200 mg/kg) followed by weekly subcutaneous injections of carbon tetrachloride (CCl4, 3 ml/kg) for 6 weeks induced hepatocellular carcinoma (HCC) in rats was studied. At 45 day after administration of NDEA, 100 and 200 mg/kg of ANBE were administered orally once daily for 10 weeks. The levels of liver injury and liver cancer markers such as alanine transaminase (ALT), aspartate transaminase (AST), alkaline phosphatase (ALP), γ-glutamyl transferase (γ-GT), total bilirubin level (TBL), α-feto protein (AFP) and carcinoembryonic antigen (CEA) were substantially increased following NDEA treatment. However, ANBE treatment reduced liver injury and restored liver cancer markers. ANBE also significantly prevented hepatic malondialdehyde (MDA) formation and reduced glutathione (GSH) in NDEA-treated rats which was dose dependent. Additionally, ANBE also increased the activities of antioxidant enzymes viz., catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx), and glutathione-S-transferase (GST) in the liver of NDEA-administered rats. Eventually, ANBE also significantly improved body weight and prevented increase of relative liver weight due to NDEA treatment. Histological observations of liver tissues too correlated with the biochemical observations. HPLC analysis of ANBE showed the presence of gallic, protocatechuic, caffeic and ellagic acids, and also quercetin in ANBE. The results strongly support that A. nilotica bark prevents lipid peroxidation (LPO) and promote the enzymatic and non-enzymatic antioxidant defense system during NDEA-induced hepatocarcinogenesis which might be due to activities like scavenging of oxy radicals by the phytomolecules in ANBE.  相似文献   
82.
Corynebacterium glutamicum that expresses an exogenous l-glutamate decarboxylase (GAD) gene can synthesize γ-aminobutyric acid (GABA). GABA is decomposed to succinic semialdehyde (SSA) by GABA transaminase (GABA-T) and to succinate thereafter by SSA dehydrogenase (SSADH). However, deletion of the gabT gene encoding GABA-T could not prevent GABA from decomposing at neutral pH. In this study, an additional transaminase gene, NCgl2515, was deleted in a gabT-deleted GAD strain, and GABA fermentation in this gabT NCgl2515-deleted GAD strain was investigated. GABA concentration remained at 22.5–24.0 g/L when pH was maintained at 7.5–8.0, demonstrating that GABA decomposition was reduced. Activity assay indicated that unlike GabT, which exhibits high GABA-T activity (1.34 ± 0.06 U/mg) and utilizes only α-ketoglutarate as amino acceptor, the purified NCgl2515 protein exhibits very low GABA-T activity (approximately 0.03 U/mg) only when coupled with the SSADH, GabD, but can utilize both α-ketoglutarate and pyruvate as amino acceptor. The optimum pH for coupled NCgl2515–GabD was 8.0, similar to that of GabT (7.8). Therefore, NCgl2515 has weak GABA-T activity and is involved in GABA decomposition in C. glutamicum. Deletion of gabT and NCgl2515 could effectively reduce GABA decomposition at neutral pH.  相似文献   
83.
ω-Transaminase (ω-TA) is the only naturally occurring enzyme allowing asymmetric amination of ketones for production of chiral amines. The active site of the enzyme was proposed to consist of two differently sized substrate binding pockets and the stringent steric constraint in the small pocket has presented a significant challenge to production of structurally diverse chiral amines. To provide a mechanistic understanding of how the (S)-specific ω-TA from Paracoccus denitrificans achieves the steric constraint in the small pocket, we developed a free energy analysis enabling quantification of individual contributions of binding and catalytic steps to changes in the total activation energy caused by structural differences in the substrate moiety that is to be accommodated by the small pocket. The analysis exploited kinetic and thermodynamic investigations using structurally similar substrates and the structural differences among substrates were regarded as probes to assess how much relative destabilizations of the reaction intermediates, i.e. the Michaelis complex and the transition state, were induced by the slight change of the substrate moiety inside the small pocket. We found that ≈80% of changes in the total activation energy resulted from changes in the enzyme-substrate binding energy, indicating that substrate selectivity in the small pocket is controlled predominantly by the binding step (KM) rather than the catalytic step (kcat). In addition, we examined the pH dependence of the kinetic parameters and the pH profiles of the KM and kcat values suggested that key active site residues involved in the binding and catalytic steps are decoupled. Taken together, these findings suggest that the active site residues forming the small pocket are mainly engaged in the binding step but not significantly involved in the catalytic step, which may provide insights into how to design a rational strategy for engineering of the small pocket to relieve the steric constraint toward bulky substituents.  相似文献   
84.
Shao R  Barker SC 《Gene》2011,473(1):36-43
The mitochondrial (mt) genome of the human body louse, Pediculus humanus, consists of 18 minichromosomes. Each minichromosome is 3 to 4 kb long and has 1 to 3 genes. There is unequivocal evidence for recombination between different mt minichromosomes in P. humanus. It is not known, however, how these minichromosomes recombine. Here, we report the discovery of eight chimeric mt minichromosomes in P. humanus. We classify these chimeric mt minichromosomes into two groups: Group I and Group II. Group I chimeric minichromosomes contain parts of two different protein-coding genes that are from different minichromosomes. The two parts of protein-coding genes in each Group I chimeric minichromosome are joined at a microhomologous nucleotide sequence; microhomologous nucleotide sequences are hallmarks of non-homologous recombination. Group II chimeric minichromosomes contain all of the genes and the non-coding regions of two different minichromosomes. The conserved sequence blocks in the non-coding regions of Group II chimeric minichromosomes resemble the "recombination repeats" in the non-coding regions of the mt genomes of higher plants. These repeats are essential to homologous recombination in higher plants. Our analyses of the nucleotide sequences of chimeric mt minichromosomes indicate both homologous and non-homologous recombination between minichromosomes in the mitochondria of the human body louse.  相似文献   
85.
Metabolism of glutamate, the primary excitatory neurotransmitter in brain, is complex and of paramount importance to overall brain function. Thus, understanding the regulation of enzymes involved in formation and disposal of glutamate and related metabolites is crucial to understanding glutamate metabolism. Glutamate dehydrogenase (GDH) is a pivotal enzyme that links amino acid metabolism and TCA cycle activity in brain and other tissues. The allosteric regulation of GDH has been extensively studied and characterized. Less is known about the influence of lipid modifications on GDH activity, and the participation of GDH in transient heteroenzyme complexes (metabolons) that can greatly influence metabolism by altering kinetic parameters and lead to channeling of metabolites. This review summarizes evidence for palmitoylation and acylation of GDH, information on protein binding, and information regarding the participation of GDH in transient heteroenzyme complexes. Recent studies suggest that a number of other proteins can bind to GDH altering activity and overall metabolism. It is likely that these modifications and interactions contribute additional levels of regulation of GDH activity and glutamate metabolism.  相似文献   
86.
It has been claimed that weak extremely low frequency electromagnetic fields (ELF‐EMFs) can affect biochemical reactions and a wide‐ranging body of literature is available on this topic. Nevertheless, the physical nature of these effects remains largely unknown. We investigated the influence of ELF‐EMF on glutamic acid solutions using Fourier transform infrared‐attenuated total reflectance (FTIR‐ATR) spectra. Samples were exposed for 10, 20, or 30 min to a weak EMF generated by Helmoltz coils, and then placed in a spectrometer. After exposure, those solutions that had a pH lower than the isoelectric point tended to show a shift toward the deprotonation of the carboxylic group, while solutions having a pH greater than the isoelectric point showed the deprotonation of the residual amine group. Moreover, at low pH values, we also detected a shift of the δantisym band of the amine. The effects lasted a few minutes after exposure before the native configuration was restored. The spectral modifications were observed after each independent exposure to EMFs, and the same effects were seen by varying the frequencies in the range of 0–7 kHz. Therefore, the hypothesis of the existence of a resonant frequency that has been proposed elsewhere cannot be supported by the results of this study. The most surprising characteristic of this effect is the long‐lasting nature of the perturbation, which is hard to be explained in terms of short‐living excitations in biological matter. Bioelectromagnetics 32:218–225, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   
87.
88.
89.
Glioblastoma, an aggressive brain tumor, has a poor prognosis and a high risk of recurrence. An improved chemotherapeutic approach is required to complement radiation therapy. Gold(I) complexes bearing phosphole ligands are promising agents in the treatment of cancer and disturb the redox balance and proliferation of cancer cells by inhibiting disulfide reductases. Here, we report on the antitumor properties of the gold(I) complex 1-phenyl-bis(2-pyridyl)phosphole gold chloride thio-β-d-glucose tetraacetate (GoPI-sugar), which exhibits antiproliferative effects on human (NCH82, NCH89) and rat (C6) glioma cell lines. Compared to carmustine (BCNU), an established nitrosourea compound for the treatment of glioblastomas that inhibits the proliferation of these glioma cell lines with an IC50 of 430 μM, GoPI-sugar is more effective by two orders of magnitude. Moreover, GoPI-sugar inhibits malignant glioma growth in vivo in a C6 glioma rat model and significantly reduces tumor volume while being well tolerated. Both the gold(I) chloro- and thiosugar-substituted phospholes interact with DNA albeit more weakly for the latter. Furthermore, GoPI-sugar irreversibly and potently inhibits thioredoxin reductase (IC50 4.3 nM) and human glutathione reductase (IC50 88.5 nM). However, treatment with GoPI-sugar did not significantly alter redox parameters in the brain tissue of treated animals. This might be due to compensatory upregulation of redox-related enzymes but might also indicate that the antiproliferative effects of GoPI-sugar in vivo are rather based on DNA interaction and inhibition of topoisomerase I than on the disturbance of redox equilibrium. Since GoPI-sugar is highly effective against glioblastomas and well tolerated, it represents a most promising lead for drug development. This article is part of a Special Issue entitled: Thiol-Based Redox Processes.  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号