首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2251篇
  免费   96篇
  国内免费   34篇
  2023年   16篇
  2022年   22篇
  2021年   46篇
  2020年   44篇
  2019年   42篇
  2018年   38篇
  2017年   24篇
  2016年   37篇
  2015年   57篇
  2014年   89篇
  2013年   126篇
  2012年   84篇
  2011年   98篇
  2010年   79篇
  2009年   90篇
  2008年   122篇
  2007年   108篇
  2006年   109篇
  2005年   105篇
  2004年   119篇
  2003年   101篇
  2002年   111篇
  2001年   103篇
  2000年   54篇
  1999年   58篇
  1998年   52篇
  1997年   39篇
  1996年   42篇
  1995年   49篇
  1994年   53篇
  1993年   26篇
  1992年   33篇
  1991年   18篇
  1990年   11篇
  1989年   28篇
  1988年   18篇
  1987年   16篇
  1986年   16篇
  1985年   18篇
  1984年   10篇
  1983年   8篇
  1982年   5篇
  1981年   12篇
  1980年   10篇
  1979年   5篇
  1978年   5篇
  1976年   5篇
  1975年   5篇
  1974年   4篇
  1973年   7篇
排序方式: 共有2381条查询结果,搜索用时 31 毫秒
71.
72.
An ammonia limited chemostat culture of Gymnodinium simplex (Lohm.) Kofoid & Swezy was perturbed with ammonia and fluctuations in the free intracellular amino acid pools were followed 80 min. The steady-state value of glutamate was 2.07 ± 10-15 mol cell-1 and of glutamine was 0.31 ± 10-15 mol cell-1. Five minutes after the perturbation, a substantial rise in glutamine was observed with a corresponding decrease in glutamate. This is considered a result of glutamine synthetase acting as the primary ammonia assimilating enzyme. The level of ammonia and the major free amino acids reached a maximum 10 min after the perturbation and then slowly decreased.  相似文献   
73.
Purified synaptic vesicles were isolated from hog cerebral cortex by a rapid procedure consisting of homogenization of cerebral cortex slices in iso-osmotic sucrose, differential centrifugation and sucrose density-gradient centrifugation. The purity of the vesicles was evaluated both biochemically and morphologically. The vesicles contained high amounts of γ-aminobutyrate (GABA) and acetylcholine at specific concentrations of 390 nmol/mg protein and 7.2 nmol/mg protein respectively.

Glutamate decarboxylase, the enzyme which catalyses GABA formation, binds to the synaptic vesicles in a calcium-dependent manner. The percentage of glutamate decarboxylase bound to the vesicles increases from about 5% without calcium, reaching a plateau of about 60% at 4 mM Ca2+. Magnesium in concentrations 0.2–10 mM has no significant effect on glutamate decarboxylase binding. Also in phospholipid vesicles (small unilamellar phosphatidylserine-phosphatidylcholine. 2:1 liposomes) Ca2+, but not Mg2+, induced the binding of glutamate decarboxylase, reaching a plateau of 50% at 2 mM Ca2+. Both in synaptic vesicles and in phospholipid vesicles the calcium-dependent glutamate decarboxylase binding seems to be specific, and not caused by unspecific association of proteins, since the specific binding (bound enzyme activity/mg bound protein) increases 3-fold from 0 to 4 mM Ca2+.

The functional role of this binding was studied in GAD containing vesicles by measuring the relationship between the accumulation of [3H]GABA, newly synthetized from [3H]glutamate, and the uptake of added [14C]GABA. No significant uptake of [14C]GABA was found under the experimental conditions used, whereas large amounts of [3H]GABA were found within the vesicles. It appears that the [3H]GABA accumulation process is functionally linked to [3H]GABA synthesis and is mediated by the membrane-bound glutamate decarboxylase. This synthesis-coupled uptake of GABA into synaptic vesicles possibly serves to bring about a plasticity effect in previously stimulated GABAergic nerve endings.  相似文献   

74.
The selective metabotropic glutamate receptor agonist trans-1-aminocyclopentane-1,3-dicarboxylic acid (trans-ACPD) stimulates phosphoinositide hydrolysis and elicits several physiological responses in rat hippocampal slices. However, recent studies suggest that the physiological effects of trans-ACPD in the hippocampus are mediated by activation of a receptor that is distinct from the phosphoinositide hydrolysis-linked receptor. Previous experiments indicate that cyclic AMP mimics many of the physiological effects of trans-ACPD in hippocampal slices. Furthermore, recent cloning and biochemistry experiments indicate that multiple metabotropic glutamate receptor subtypes exist, some of which are coupled to yet unidentified effector systems. Thus, we performed a series of experiments to test the hypothesis that ACPD increases cyclic AMP levels in hippocampal slices. We report that 1S,3R- and 1S,3S-ACPD (but not 1R,3S-ACPD) induce a concentration-dependent increase in cyclic AMP accumulation in hippocampal slices. This effect was blocked by the metabotropic glutamate receptor antagonist L-2-amino-3-phosphonoproprionic acid but not by selective antagonists of ionotropic glutamate receptors. Furthermore, our results suggest that 1S,3R-ACPD-stimulated increases in cyclic AMP accumulation are not secondary to increases in cell firing or to activation of phosphoinositide hydrolysis.  相似文献   
75.
Little is known about the in vivo function of the GTP-binding protein-coupled "metabotropic" excitatory amino acid (EAA) receptor. In vitro studies on agonist-induced brain phosphoinositide hydrolysis have shown that (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid is a highly selective and efficacious metabotropic EAA agonist. We have recently reported that in vivo unilateral intrastriatal injection of (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid induces transient extrapyramidal motor activation that manifests itself as contralateral turning. In this study, we fully characterized the onset of turning behavior following intrastriatal (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid injection and the possible involvement of striatal dopamine neurons in the mediation of this effect. Rats were anesthetized with the short-acting agent halothane to allow for rapid surgical recovery and thus early behavioral measurements. Intrastriatal (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (1 mumol/2 microliters) produced an incremental increase in contralateral turning starting at 1 h and plateauing 3-6 h after injection (peak effect, 39.1 +/- 6.7 rotations per 5 min). Dopamine depletion with alpha-methyl-DL-p-tyrosine (250 mg/kg i.p., 80% depletion) resulted in greater than 85% inhibition of (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid-induced contralateral turning. The dopamine antagonist haloperidol (0.3 mg/kg i.p.) produced 48% inhibition of the (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid response. In time course studies, turning behavior correlated with increases in levels of the dopamine metabolites 3,4-dihydroxyphenylacetic acid and homovanillic acid. These results suggest a functional interaction between the metabotropic EAA receptor and the dopaminergic system in the striatum.  相似文献   
76.
Ferredoxin-dependent glutamate synthase (Fd-GOGAT, EC 1.4.7.1) was purified to electrophoretic homogeneity from leaves of tobacco (Nicotiana tabacum L.). The holoenzyme is a monomeric flavoprotein with a molecular weight of 164 kDa. Polyclonal rabbit antibodies against the purified enzyme were used to isolate a 450-bp Fd-GOGAT cDNA clone (C16) from a tobacco gt11 expression library. A longer Fd-GOGAT cDNA clone (C35) encoding about 70% of the amino acids of tobacco Fd-GOGAT was isolated from a tobacco gt10 cDNA library using C16 as the probe. The amino-acid sequence of the protein encoded by the Fd-GOGAT cDNA clone C35 was delineated. It is very likely that Fd-GOGAT is encoded by two genes in the amphidiploid genome of tobacco while only a single Fd-GOGAT gene appears to be present in the diploid genome of Nicotiana sylvestris. Two Fd-GOGAT isoenzymes could be distinguished in extracts of tobacco leaf protein. In contrast, a single Fd-GOGAT protein species was detected in leaves of Nicotiana sylvestris speg. et Comes. In tobacco leaves, the 6-kb Fd-GOGAT mRNA is about 50-fold less abundant than chloroplastic glutamine synthetase (EC 6.3.1.2) mRNA. Both Fd-GOGAT mRNA and Fd-GOGAT protein accumulated during greening of etiolated tobacco leaves, and a concomitant increase in Fd-GOGAT activity was observed. These results indicate that tobacco Fd-GOGAT gene expression is light-inducible. Levels of Fd-GOGAT mRNA in tobacco organs other than leaves were below the detection limit of our Northern-blot analysis. Polypeptides of Fd-GOGAT were present in tobacco leaves and, to a lesser extent, in pistils and anthers, but not in corollas, stems and roots. These results support organ specificity in tobacco Fd-GOGAT gene expression.Abbreviations bp base pairs - Fd-GOGAT ferredoxin-dependent glutamate synthase - GS glutamine synthetase - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate The authors wish to thank Juan Luis Gómez Pinchetti (Marine Plant Biotechnology Laboratory) for his assistance during the experiments. This study was supported by grants received from SAREC (Swedish Agency for Research Cooperation with Developing Countries), Carl Tryggers Fund for Scientific Research (K. Haglund), SJFR (Swedish Council for Forestry and Agricultural Research) (M. Björk, M. Pedersén), CITYT Spain (SAB 89-0091 and MAR 91-1237, M. Pedersén) and CICYT Spain (Z. Ramazanov, invited professor of Ministerio de Educatión y Ciencia, Spain). The planning of this cooperation was facilitated by COST-48.  相似文献   
77.
78.
Seasonal changes in glutamine synthetase (EC 6.3.1.2), glutamate synthase (EC 2.6.1.53), and glutamate dehydrogenase (EC 1.4.1.3) were measured in both senescing leaf and bark tissues of ‘Golden Delicious’ apple trees (Malus domestica Borkh.). From the measured enzyme activities we attempted to estimate the in vivo catalytic potentials of the enzymes with special reference to nitrogen mobilization and conservation of senescing apple trees. The cumulative glutamine synthetase activity of leaf tissue was about three times higher than that of bark. The estimated catalytic potential of leaf glutamine synthetase was 800-fold higher than the actual protein nitrogen loss of senescing leaves. The cumulative glutamate synthase activity of bark was about six times higher than that of leaf. The estimated catalytic potential of bark glutamate synthase was 160-times higher than the actual protein nitrogen gain in that tissue. The cumulative glutamate dehydrogenase activities in leaf and bark tissue were approximately the same. However, the catalytic potential of leaf glutamate dehydrogenase was twice that of leaf glutamate synthase. It is thus concluded that the physiological role of glutamine synthetase in senescing leaf tissue is to furnish the amide(s) prior to mobilization of nitrogen to storage tissue. The higher activity of glutamate synthase in bark tissue could provide a mechanism to transform the imported amide nitrogen to amino nitrogen of glutamate for storage protein synthesis. The possible regulatory factors upon the activity of these enzymes in the tissues of senescing apple trees are discussed.  相似文献   
79.
SYNOPSIS Two glutamate dehydrogenases, NADH-linked (EC 1.2.1.2) and NADPH-linked (EC 1.2.1.4.) were isolated from the epimastigote forms of Trypanosoma cruzi and purified. Both enzymes exist as hexamers. The molecular weights of the native NADH-and NADPH-linked glutamate dehydrogenases were estimated to be 360,000 and 265,000, respectively, and those of the subunits to be 58,000 and 43,000, respectively. The isoelectric point of the NADH-linked dehydrogenase is at pH 5.25 and that of the NADPH-linked enzyme at pH 5.1. The activities of both enzymes are regulated by product inhibition. In addition, purine nucleotides were shown to be potent inhibitors of the NADH-linked glutamate dehydrogenase.  相似文献   
80.
The distribution of the cysteine sulfinate transaminase activity in adult and newborn rat central nervous system was studied and compared with the distribution of the glutamate oxaloacetate transaminase activity. The subcellular localization of both enzyme activities was also investigated. These experiments suggest that both enzymes, sometimes considered as identical, are different.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号