首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2251篇
  免费   96篇
  国内免费   34篇
  2023年   16篇
  2022年   22篇
  2021年   46篇
  2020年   44篇
  2019年   42篇
  2018年   38篇
  2017年   24篇
  2016年   37篇
  2015年   57篇
  2014年   89篇
  2013年   126篇
  2012年   84篇
  2011年   98篇
  2010年   79篇
  2009年   90篇
  2008年   122篇
  2007年   108篇
  2006年   109篇
  2005年   105篇
  2004年   119篇
  2003年   101篇
  2002年   111篇
  2001年   103篇
  2000年   54篇
  1999年   58篇
  1998年   52篇
  1997年   39篇
  1996年   42篇
  1995年   49篇
  1994年   53篇
  1993年   26篇
  1992年   33篇
  1991年   18篇
  1990年   11篇
  1989年   28篇
  1988年   18篇
  1987年   16篇
  1986年   16篇
  1985年   18篇
  1984年   10篇
  1983年   8篇
  1982年   5篇
  1981年   12篇
  1980年   10篇
  1979年   5篇
  1978年   5篇
  1976年   5篇
  1975年   5篇
  1974年   4篇
  1973年   7篇
排序方式: 共有2381条查询结果,搜索用时 31 毫秒
61.
62.
Pine seedlings are able to accumulate chlorophylls and develop green plastids in a light-independent manner. In this work, we have characterized ferredoxin-dependent glutamate synthase (EC 1.4.7.1; Fd-GOGAT), a key enzyme in nitrogen interconversion during this process. Fd-GOGAT has been purified about 170-fold from cotyledons of maritime pine (Pinus pinaster). As occurs in angiosperms, the native enzyme is a single polypeptide with an apparent molecular mass of 163–168 kDa that is confined to the chloroplast stroma. Polyclonal antibodies generated against the purified enzyme were used to immunoscreen a gt11 expression library from Scots pine (Pinus sylvestris) seedlings and partial cDNA clones were isolated and characterized. The clone with the longest cDNA insert (pGOP44) contained the codification for the C-terminal (550 amino acids) of the pine Fd-GOGAT polypeptide. Immunological cross-reactivity and comparative amino sequence analysis revealed that Fd-GOGAT is a well conserved protein in higher plants. Western blot analyses showed that protein was expressed in chloroplast-containing pine tissues and this expression pattern was not affected by exogenously supplied nitrogen. Fd-GOGAT mRNA, polypeptide and enzyme activity accumulated in substantial amounts in dark-grown pine seedlings. The presence of a functional Fd-GOGAT may be important to provide the required glutamate for the biosynthesis of nitrogen compounds during chloroplast biogenesis in the dark.  相似文献   
63.
Abstract: We previously reported that a variant with extra amino acid residues exists in the metabotropic glutamate receptor subtype 5 (mGluR5). Either of the two isoforms, named mGluR5b and mGluR5a for the isoforms with and without the inserted sequence, respectively, generated Ca2+-activated Cl current when expressed in Xenopus oocytes. We herein report that these two isoforms are produced by the alternative splicing of the exon skipping type. When examined during the course of postnatal development, the major mGluR5 isotype mRNA was observed to switch from mGluR5a to mGluR5b in the rat hippocampus and the cerebral cortex. We also investigated two cell lines that could be differentiated into neuron-like cells in vitro. Whereas the mGluR5b mRNA was hardly detectable in either undifferentiated or differentiated NG108-15 cells, the relative amounts of the two variant mRNAs changed after the induction of differentiation in the P19 cells. An extracellular application of trans - d,l -1-amino-1,3-cyclopentanedicarboxylate on the neuron-like P19 cells induced intracellular Ca2+ mobilization, thus suggesting that the cells could express functional mGluR(s) coupled to phospholipase C and other components that could mediate the signal transduction pathway. This cell line may thus provide a model system for studying both mGluR5 expression and other mGluR-induced phenomena at the molecular level.  相似文献   
64.
Abstract: We have shown that the vertebrate neuropeptide N-acetylaspartylglutamate (NAAG) meets the criteria for a neurotransmitter, including function as a selective metabotropic glutamate receptor (mGluR) 3 agonist. Short-term treatment of cerebellar granule cells with NAAG (30 µM) results in the transient increase in content of GABAAα6 subunit mRNA. Using quantitative PCR, this increase was determined to be up to 170% of control values. Similar effects are seen following treatment with trans-1-aminocyclopentane-1,3-dicarboxylate and glutamate and are blocked by the mGluR antagonists (2S,3S,4S)-2-methyl-2-(carboxycyclopropyl)glycine and (2S)-α-ethylglutamic acid. The effect is pertussis toxin-sensitive. The increase in α6 subunit mRNA level can be simulated by activation of other receptors negatively linked to adenylate cyclase activity, such as adenosine A1, α2-adrenergic, muscarinic, and GABAB receptors. Forskolin stimulation of cyclic AMP (cAMP) levels abolished the effect of NAAG. The change in α6 levels induced by 30 µM NAAG can be inhibited in a dose-dependent manner by simultaneous application of increasing doses of the β-adrenergic receptor agonist isoproterenol. The increase in α6 mRNA content is followed by a fourfold increase in α6 protein level 6 h posttreatment. Under voltage-clamped conditions, NAAG-treated granule cells demonstrate an increase in the furosemide-induced inhibition of GABA-gated currents in a concentration-dependent manner, indicating an increase in functional α6-containing GABAA receptors. These data support the hypothesis that NAAG, acting through mGluR3, regulates expression of the GABAAα6 subunit via a cAMP-mediated pathway and that cAMP-coupled receptors for other neurotransmitters may similarly influence GABAA receptor subunit composition.  相似文献   
65.
Abstract: Neurons containing multiple excitatory inputs may sort and target glutamate receptor subtypes to subsets of synapses. A good model for testing this hypothesis is the Purkinje cell, which expresses significant levels of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate, kainate, N -methyl- d -aspartate, δ-, and metabotropic glutamate receptors. Purkinje cells receive two excitatory inputs, the parallel and climbing fibers; the combined effect of stimulation of these two inputs is to produce long-term depression of parallel fiber/Purkinje cell neurotransmission. Distribution of glutamate receptors in these two synapse populations in rat cerebella was studied using preembedding immunocytochemistry with antibodies to GluR1, GluR2/3, GluR5-7, NR1, δ1/2, and mGluR1α. Moderate/dense postsynaptic staining was most frequent in postsynaptic densities and spines of both parallel and climbing fiber synapses with mGluR1α antibody, was intermediate in frequency with GluR2/3 and GluR5-7 antibodies, and was least frequent with GluR1 and NR1 antibodies. The most striking finding was the absence of significant postsynaptic staining with δ1/2 antibody in climbing fiber synapses in adult animals, even though postsynaptic staining was prevalent in parallel fiber synapses with this antibody. In contrast to adults, moderate/dense postsynaptic immunolabeling of climbing fiber synapses with δ1/2 antibody was common in rats at 10 days postnatal. This study provides direct morphological evidence that δ-glutamate receptors are differentially targeted to synapse populations. Our results support previous suggestions that δ2 is involved in development of parallel and climbing fiber synapses and in long-term depression of parallel fiber/Purkinje synaptic responses in adults.  相似文献   
66.
In the fluid percussion model of traumatic brain injury (TBI), we examined muscarinic and metabotropic glutamate receptor-stimulated polyphosphoinositide (PPI) turnover in rat hippocampus. Moderate injury was obtained by displacement and deformation of the brain within the closed cranial cavity using a fluid percussion device. Carbachol and (±)-1-Aminocyclopentane-trans-1,3.-dicarboxylic acid (trans-ACPD)-stimulated PPI hydrolysis was assayed in hippocampus from injured and sham-injured controls at both 1 hour and 15 days following injury. At 1 hour after TBI, the response to carbachol was enhanced in injured rats by up to 200% but the response to trans-ACPD was diminished by as much as 28%. By contrast, at 15 days after TBI, the response to carbachol was enhanced by 25% and the response to trans-ACPD was enhanced by 73%. The ionotropic glutamate agonists N-methyl-D-aspartate (NMDA), and -amino-3 hydroxy-5-methyl-4-isoxazolepropionate (AMPA), did not increase PPI hydrolysis in either sham or injured rats and injury did not alter basal hydrolysis. Thus, hippocampal muscarinic and metabotropic receptors linked to phospholipase C are differentially altered by TBI.Abbreviations used TBI traumatic brain injury - EAA excitatory amino acids - PPI polyphosphoinositides - IP inositol phosphates - NMDA N-methyl-D-aspartate - AMPA -amino-3-hydroxy-5-methylisoxazole-4-propionate - trans-ACPD (±)-1-Aminocyclopentanetrans-1,3-dicarboxylic acid - LTP long term potentiation  相似文献   
67.
Homogenates of specific brain regions of three sensory systems (auditory, olfactory, and visual) were prepared from pigmented Long-Evans Hooded rats and assayed for amino acid concentrations and activities of glutaminase, aspartate aminotransferase (total, cytosolic, and, by difference, mitochondrial), malate dehydrogenase, lactate dehydrogenase, and choline acetyltransferase. Comparing the quantitative distributions among regions revealed significant correlations between AAT and aspartate, between glutaminase and glutamate, between glutamate and glutamine, and between AAT plus glutaminase, or glutaminase alone, and the sum of aspartate, glutamate, and GABA, suggesting a metabolic pathway involving the synthesis of a glutamate pool as precursor to aspartate and GABA. Of the inhibitory transmitter amino acids, GABA concentrations routinely exceeded those of glycine, but glycine concentrations were relatively high in brainstem auditory structures.  相似文献   
68.
Summary Glutamate (Glu) the major amino acid in mammalian brain and most dietary proteins possesses neurotransmitter as well as neurotoxic properties. We administered monosodium glutamate (MSG) 4 mg/g bwt, sc on postnatal day (PND) 1 through 10 to rats on alternate days or daily and sacrificed them on PND 45 or PND 90 respectively. The activities of glutamate dehydrogenase and aminotransferases were evaluated in the circumventricular organs of brain. Results show that neonatal MSG produces alterations in glutamate metabolism in blood-brain-barrier deficient regions.  相似文献   
69.
GABA added to rat brain mitochondria causes oxidation of intramitochondrial NAD(P)H as well as inducing glutamate efflux from the mitochondrial matrix. The rate of NAD(P)H oxidation shows saturation characteristics, depends on GABA transport across the mitochondrial membrane and is inhibited by non-penetrant compounds and by the metal-complexing agent bathophenanthroline. These results show the existence of a specific GABA carrier. Inhibition studies strongly suggest the existence of two separate binding sites, namely the GABA binding site and the dicarboxylates binding site, as well as suggest the presence of a metal ion (ions) at GABA binding site. The occurrence of a GABA/GLUTAMATE antiport is proposed which allows a cyclical route to account for GABA synthesis and degradation in brain.  相似文献   
70.
Previous research showed that addition of nutrient nitrogen to ligninolytic (stationary, nitrogen-starved) cultures of the wood-decomposing basidiomycete Phanerochaete chrysosporium causes a suppression of lignin degradation. The present study examined early effects on nitrogen metabolism that followed addition of NH 4 + and l-glutamate at concentrations that yield similar patterns of suppression. Both nitrogenous compounds were rapidly assimilated (>80% in 6 h). Both caused an initial 80% or greater increase in the intracellular glutamate pool and had similar effects in increasing the specific activities of NADP- and NAD-glutamate dehydrogenases and glutamine synthetase. Differences between the effects of added NH 4 + and glutamate showed that suppression was not correlated with intracellular pools of arginine or glutamine, nor was the maintenance of an elevated glutamate pool required to maintain the suppressed state. While a portion of the initial glutamate suppression could be attributed to an effect on central carbon metabolism through glutamate catabolism by NAD-glutamate dehydrogenase, the long term suppression by glutamate and the suppression by NH 4 + were more specific. Suppression by NH 4 + or glutamate in the presence or absence of protein synthesis (cycloheximide) followed essentially identical kinetics during 12 h. These results indicate that nitrogen additions cause a biochemical repression of enzymes associated with lignin degradation. Results are consistent with the hypothesis that nitrogen metabolism via glutamate plays a role in initiation of repression.Non-Standard Abbreviations DMS 2,2-dimethylsuccinate - TCA trichloroacetic acid  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号