首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2255篇
  免费   96篇
  国内免费   34篇
  2023年   16篇
  2022年   26篇
  2021年   46篇
  2020年   44篇
  2019年   42篇
  2018年   38篇
  2017年   24篇
  2016年   37篇
  2015年   57篇
  2014年   89篇
  2013年   126篇
  2012年   84篇
  2011年   98篇
  2010年   79篇
  2009年   90篇
  2008年   122篇
  2007年   108篇
  2006年   109篇
  2005年   105篇
  2004年   119篇
  2003年   101篇
  2002年   111篇
  2001年   103篇
  2000年   54篇
  1999年   58篇
  1998年   52篇
  1997年   39篇
  1996年   42篇
  1995年   49篇
  1994年   53篇
  1993年   26篇
  1992年   33篇
  1991年   18篇
  1990年   11篇
  1989年   28篇
  1988年   18篇
  1987年   16篇
  1986年   16篇
  1985年   18篇
  1984年   10篇
  1983年   8篇
  1982年   5篇
  1981年   12篇
  1980年   10篇
  1979年   5篇
  1978年   5篇
  1976年   5篇
  1975年   5篇
  1974年   4篇
  1973年   7篇
排序方式: 共有2385条查询结果,搜索用时 15 毫秒
141.
The malignant growth of glial support cells causes gliomas, highly invasive, primary brain tumors that are largely resistant to therapy. Individual tumor cells spread by active cell migration, invading diffusely into the normal brain. This process is facilitated by Cl channels that endow glioma cells with an enhanced ability to quickly adjust their shape and cell volume to fit the narrow and tortuous extracellular brain spaces. Once satellite tumors enlarge, their growth is limited by the spatial constraints imposed by the bony cavity of the skull and spinal column. Glioma cells circumvent this limitation by active destruction of peritumoral neural tissue through the release of glutamate, inducing peritumoral seizures and ultimately excitotoxic neuronal cell death. Hence, primary brain tumors support their unusual biology by taking advantage of ion channels and transporters that are designed to support ion homeostatic functions in normal brain.  相似文献   
142.
-N-oxalyl-l-,-diaminopropionic acid (l-ODAP) toxicity has been associated with lathyrism; a spastic paraparesis caused by excessive dietary intake of the pulse Lathyrus sativus. We investigated the effect of Lathyrus neurotoxin l-ODAP on protein kinase C (PKC) activity under in vitro conditions. l-ODAP activated phosphorylation activity of purified chick brain PKC. Both lysine-rich (histone III-S) and arginine-rich (protamine sulfate) substrate phosphorylation was enhanced in the presence of l-ODAP. The activation is concentration dependent, and maximal activation is observed at 100 M concentration. Protamine sulfate phosphorylation was enhanced by 47%, whereas histone III-S phosphorylation was enhanced by 50% over PS/PDBu/Ca2+ dependent activity. The nontoxic d-isomer (d-ODAP) did not affect both histone III-S and protamine sulfate phosphorylation activity. These results indicate that l-ODAP taken up by neuronal cells could also contribute to PKC activation and so be associated with toxicity.  相似文献   
143.
In the current study we investigated the effect of the branched-chain alpha-keto acids (BCKA) co-ketoisocaproic (KIC), alpha-keto-beta-methylvaleric (KMV), and alpha-ketoisovaleric (KIV) acids, which accumulate in maple syrup urine disease (MSUD), on the in vitro uptake of [3H]glutamate by cerebral cortical slices from rats aged 9, 21, and 60 days of life. We initially observed that glutamate uptake into cerebral cortex of 9- and 21-day-old rats was significantly higher, as compared to that of 60-day-old rats. Furthermore, KIC inhibited this uptake by tissue slices at all ages studied, whereas KMV and KIV produced the same effect only in cortical slices of 21- and 60-day-old rats. Kinetic assays showed that KIC significantly inhibited glutamate uptake in the presence of high glutamate concentrations (50 microM and greater). We also verified that the reduction of glutamate uptake was not due to cellular death, as evidenced by tetrazolium salt and lactate dehydrogenase viability tests of cortical slices in the presence of the BCKA. It is therefore presumed that the reduced glutamate uptake caused by the BCKA accumulating in MSUD may lead to higher extracellular glutamate levels and potentially to excitotoxicity, which may contribute to the neurological dysfunction of the affected individuals.  相似文献   
144.
Dehydroepiandrosterone (DHEA) exerts multiple effects in the central nervous system. Most of them seem to be mediated through their nongenomic actions on neurotransmitter receptors, and these actions occur within seconds or milliseconds. DHEA increases neuronal excitability, enhances neuronal plasticity, and has neuroprotective properties. By investigating glutamate release from synaptosomes of rats at different ages (from 17 days to 12 months), we observed that (i) there is an increase in basal and K(+)-stimulated L-[3H] glutamate release in rats at 12 months old, when compared to other ages; and (ii) there is an inhibitory effect of DHEA on basal L-[3H] glutamate release in 12 months old. This inhibitory effect of DHEA could be related to its reported protective role against excitotoxicity caused by overstimulation of the glutamatergic system and ageing.  相似文献   
145.
The goal of this study was to investigate the isolated and combined effect of ebselen and Hg2+ on calcium influx and on glutamatergic system. We examined the in vitro effects of 2 phenyl-1,2-benzisoselenazol-3(2H)-ona), (Ebselen) on 45Ca2+ influx in synaptosomes of rat at rest and during depolarization and glutamate uptake into synaptosomes. Entry of 45Ca was measured during exposure to mercury in non-depolarizing and depolarizing solutions. Ebselen abolished the inhibition of 45Ca2+ influx on non-depolarizing conditions; however, ebselen did no modify inhibition uptake of 45Ca2+ caused by Hg2+ in high K+ depolarizing medium. Ebselen did not modify glutamate uptake inhibition caused by Hg2+ in synaptosomes. These results indicate that ebselen has an in vitro protective effect against Hg2+ induced inhibition of Ca2+ influx into synaptosomes, depending on the depolarizing conditions of the assay. The effects of Hg2+ on glutamate uptake were not modified by ebselen, suggesting that its protection is dependent on the target protein considered.  相似文献   
146.
Taste aversion studies have demonstrated that rats conditioned to avoid monosodium glutamate (MSG) with amiloride added to reduce the intensity of the sodium component of MSG taste, generalize this aversion to aspartic acid and to L-AP4, but not to ionotropic glutamate receptor agonists. That is, MSG, L-AP4 and aspartate have similar tastes to rats. However, conditioned taste aversion methods are unable to show to what extent the tastes of two substances are different. If two substances activate the same afferent processes (e.g. taste receptors), they are likely to produce the same tastes, but if they activate different afferent processes, the subject may detect differences between the tastes of the substances. In this study, rats were tested to determine if they could discriminate between the tastes of these agonists and MSG. We also established the detection thresholds for NMDA, aspartic acid and L-AP4, with and without amiloride (a sodium channel antagonist). Taste threshold values were 1-4 mM for NMDA and aspartic acid and 0.5-2.5 microM for L-AP4. None were affected by 30 micro M amiloride. Rats could readily distinguish between the tastes of MSG and NMDA but they had difficulty discriminating between the tastes of aspartic acid and MSG. Rats could also easily distinguish between 10-100 mM MSG and 0.01-5 mM L-AP4. However, in two separate experiments error rates increased significantly when L-AP4 concentrations were between 10-100 mM, indicating that the tastes of L-AP4 and MSG were similar at these concentrations.  相似文献   
147.
Liauw J  Wang GD  Zhuo M 《生理学报》2003,55(4):373-380
谷氨酸性突触是哺乳动物神经系统的主要兴奋性突触。在正常条件下,大多数的突触反应是由谷氨酸的AMPA受体传递的。NMDA受体在静息电位下为镁离子抑制。在被激活时,NMDA受体主要参与突触的可塑性变化。但是,许多NMDA受体拮抗剂在全身或局部注射时能产生行为效应,提示NMDA受体可能参与静息状态的生理功能。此文中,我们在离体的前额扣带回脑片上进行电生理记录,发现NMDA受体参与前额扣带回的突触传递。在重复刺激或近于生理性温度时,NMDA受体传递的反应更为明显。本文直接显示了NMDA受体参与前额扣带回的突触传递,并提示NMDA受体在前额扣带回中起着调节神经元兴奋的重要作用。  相似文献   
148.
Liu X  Chi OZ  Weiss HR 《Neurochemical research》2003,28(12):1799-1804
This investigation was performed to evaluate the effects of ACPD [(1S, 3R)-1-aminocyclopentane-1,3-dicarboxylic acid], a metabotropic glutamate receptor agonist, on cerebral O2 consumption during focal cerebral ischemia. Male Wistar rats were placed in control (n = 7) and ACPD (n = 7) groups under isoflurane anesthesia. Twenty minutes after middle cerebral artery (MCA) occlusion, gauze sponges with 10–5 M ACPD or normal saline were placed on the ischemic cortex (IC) for a period of 40 min and were changed every 10 min. One hour after MCA occlusion, regional cerebral blood flow (rCBF) was determined using the C14-iodoantipyrine autoradiographic technique. Regional arterial and venous oxygen saturation were determined using microspectrophotometry. There were no statistical differences in vital signs, blood gases, and hemoglobin between the groups. In the control group, the cerebral blood flow and oxygen consumption of the IC were significantly lower than the contralateral cortex (rCBF: 45 ± 11 vs. 110 ± 11 ml/min/100 g, O2 consumption: 2.9 ± 0.4 vs. 5.4 ± 1.1 ml O2/min/100 g). ACPD did not change regional cerebral blood flow of the IC, but did significantly increase the oxygen extraction (7.8 ± 0.2 vs. 6.9 ± 0.3 ml O2/100 ml) and oxygen consumption of the IC (4.3 ± 1.5 vs. 2.9 ± 0.4) compared to the control IC. Our data demonstrated that topical application of 10–25 M ACPD to the ischemic area worsened cerebral O2 balance. These data suggest that metabotropic glutamate receptors are not maximally activated during ischemia in the temporal cortex.  相似文献   
149.
The effect of acidification of the incubation medium on the membrane potential and glutamate uptake and release was studied in isolated presynaptic neuronal endings (synaptosomes) from rat brain. Using the fluorescent probe diS-C3-(5), a rapid depolarization of plasma membrane was detected at pH 6.0, most probably as a result of the inhibition of the sodium pump and potassium channel blockade. The membrane potential decrease did not result in increase of basal efflux of glutamate. Glutamate release following K+-induced depolarization was decreased upon lowering pH to 6.0. Acidosis inhibited mainly calcium-dependent (vesicular) release of glutamate and did not significantly reduce [14C]glutamate uptake. This inhibition of glutamate release but not of glutamate uptake may be a mechanism of the protective effect of acidosis during brain ischemia.  相似文献   
150.
Astrocytes and stroke: networking for survival?   总被引:14,自引:0,他引:14  
Astrocytes are now known to be involved in the most integrated functions of the central nervous system. These functions are not only necessary for the normally working brain but are also critically involved in many pathological conditions, including stroke. Astrocytes may contribute to damage by propagating spreading depression or by sending proapoptotic signals to otherwise healthy tissue via gap junction channels. Astrocytes may also inhibit regeneration by participating in formation of the glial scar. On the other hand, astrocytes are important in neuronal antioxidant defense and secrete growth factors, which probably provide neuroprotection in the acute phase, as well as promoting neurogenesis and regeneration in the chronic phase after injury. A detailed understanding of the astrocytic response, as well as the timing and location of the changes, is necessary to develop effective treatment strategies for stroke patients.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号