首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2255篇
  免费   96篇
  国内免费   34篇
  2023年   16篇
  2022年   26篇
  2021年   46篇
  2020年   44篇
  2019年   42篇
  2018年   38篇
  2017年   24篇
  2016年   37篇
  2015年   57篇
  2014年   89篇
  2013年   126篇
  2012年   84篇
  2011年   98篇
  2010年   79篇
  2009年   90篇
  2008年   122篇
  2007年   108篇
  2006年   109篇
  2005年   105篇
  2004年   119篇
  2003年   101篇
  2002年   111篇
  2001年   103篇
  2000年   54篇
  1999年   58篇
  1998年   52篇
  1997年   39篇
  1996年   42篇
  1995年   49篇
  1994年   53篇
  1993年   26篇
  1992年   33篇
  1991年   18篇
  1990年   11篇
  1989年   28篇
  1988年   18篇
  1987年   16篇
  1986年   16篇
  1985年   18篇
  1984年   10篇
  1983年   8篇
  1982年   5篇
  1981年   12篇
  1980年   10篇
  1979年   5篇
  1978年   5篇
  1976年   5篇
  1975年   5篇
  1974年   4篇
  1973年   7篇
排序方式: 共有2385条查询结果,搜索用时 15 毫秒
131.
Glutamate is implicated in neuronal cell death. Exogenously applied DOPA by itself releases neuronal glutamate and causes neuronal cell death in in vitro striatal systems. Herein, we attempt to clarify whether endogenous DOPA is released by 10 min transient ischemia due to four-vessel occlusion during rat striatal microdialysis and, further, whether DOPA, when released, functions to cause glutamate release and resultant delayed neuronal cell death. Ischemia increased extracellular DOPA, dopamine, and glutamate, and elicited neuronal cell death 96 h after ischemic insult. Inhibition of striatal L-aromatic amino acid decarboxylase 10 min before ischemia increased markedly basal DOPA, tripled glutamate release with a tendency of decrease in dopamine release by ischemia, and exaggerated neuronal cell death. Intrastriatal perfusion of 10-30 nM DOPA cyclohexyl ester, a competitive DOPA antagonist, 10 min before ischemia, concentration-dependently decreased glutamate release without modification of dopamine release by ischemia. At 100 nM, the antagonist elicited a slight ceiling effect on decreases in glutamate release by ischemia and protected neurons from cell death. Glutamate was released concentration-dependently by intrastriatal perfusion of 0.3-1 mM DOPA and stereoselectively by 0.6 mM DOPA. The antagonist elicited no hypothermia during and after ischemia. Endogenously released DOPA is an upstream causal factor for glutamate release and resultant delayed neuronal cell death by brain ischemia in rat striata. DOPA antagonist has a neuroprotective action.  相似文献   
132.
Glutamate is well established as an excitatory neurotransmitter in the vertebrate retina. Its role as a modulator of retinal function, however, is poorly understood. We used immunocytochemistry and calcium imaging techniques to investigate whether metabotropic glutamate receptors are expressed in the chicken retina and by identified GABAergic amacrine cells in culture. Antibody labeling for both metabotropic glutamate receptors 1 and 5 in the retina was consistent with their expression by amacrine cells as well as by other retinal cell types. In double-labeling experiments, most metabotropic glutamate receptor 1-positive cell bodies in the inner nuclear layer also label with anti-GABA antibodies. GABAergic amacrine cells in culture were also labeled by metabotropic glutamate receptor 1 and 5 antibodies. Metabotropic glutamate receptor agonists elicited Ca(2+) elevations in cultured amacrine cells, indicating that these receptors were functionally expressed. Cytosolic Ca(2+) elevations were enhanced by metabotropic glutamate receptor 1-selective antagonists, suggesting that metabotropic glutamate receptor 1 activity might normally inhibit the Ca(2+) signaling activity of metabotropic glutamate receptor 5. These results demonstrate expression of group I metabotropic glutamate receptors in the avian retina and suggest that glutamate released from bipolar cells onto amacrine cells might act to modulate the function of these cells.  相似文献   
133.
134.
The relationship between neuronal glutamate turnover, the glutamate/glutamine cycle and de novo glutamate synthesis was examined using two different model systems, freshly dissected rat retinas ex vivo and in vivo perfused rat brains. In the ex vivo rat retina, dual kinetic control of de novo glutamate synthesis by pyruvate carboxylation and transamination of alpha-ketoglutarate to glutamate was demonstrated. Rate limitation at the transaminase step is likely imposed by the limited supply of amino acids which provide the alpha-amino group to glutamate. Measurements of synthesis of (14)C-glutamate and of (14)C-glutamine from H(14)CO(3) have shown that (14)C-amino acid synthesis increased 70% by raising medium pyruvate from 0.2 to 5 mM. The specific radioactivity of (14)C-glutamine indicated that approximately 30% of glutamine was derived from (14)CO(2) fixation. Using gabapentin, an inhibitor of the cytosolic branched-chain aminotransferase, synthesis of (14)C-glutamate and (14)C-glutamine from H(14)CO(3)(-) was inhibited by 31%. These results suggest that transamination of alpha-ketoglutarate to glutamate in Müller cells is slow, the supply of branched-chain amino acids may limit flux, and that branched-chain amino acids are an obligatory source of the nitrogen required for optimal rates of de novo glutamate synthesis. Kinetic analysis suggests that the glutamate/glutamine cycle accounts for 15% of total neuronal glutamate turnover in the ex vivo retina. To examine the contribution of the glutamate/glutamine cycle to glutamate turnover in the whole brain in vivo, rats were infused intravenously with H(14)CO(3)(-). (14)C-metabolites in brain extracts were measured to determine net incorporation of (14)CO(2) and specific radioactivity of glutamate and glutamine. The results indicate that 23% of glutamine in the brain in vivo is derived from (14)CO(2) fixation. Using published values for whole brain neuronal glutamate turnover, we calculated that the glutamate/glutamine cycle accounts for approximately 60% of total neuronal turnover. Finally, differences between glutamine/glutamate cycle rates in these two model systems suggest that the cycle is closely linked to neuronal activity.  相似文献   
135.
Stimulation of astrocytes with the excitatory neurotransmitter glutamate leads to the formation of inositol 1,4,5-trisphosphate and the subsequent increase of intracellular calcium content. Astrocytes express both ionotropic receptors and metabotropic glutamate (mGlu) receptors, of which mGlu5 receptors are probably involved in glutamate-induced calcium signaling. The mGlu5 receptor occurs as two splice variants, mGlu5a and mGlu5b, but it was hitherto unknown which splice variant is responsible for the glutamate-induced effects in astrocytes. We report here that both mRNAs encoding mGlu5 receptor splice variants are expressed by cultured astrocytes. The expression of mGlu5a receptor mRNA is much stronger than that of mGlu5b receptor mRNA in these cells. In situ hybridization experiments reveal neuronal expression of mGlu5b receptor mRNA in adult rat forebrain but a strong neuronal expression of mGlu5a mRNA only in olfactory bulb. Signals for mGlu5a receptor mRNA in the rest of the brain were diffuse and weak but consistently above background. Activation of mGlu5 receptors in astrocytes yields increases in inositol phosphate production and transient calcium responses. It is surprising that the rank order of agonist potency [quisqualate > (2S,1 'S,2'S)-2-(carboxycyclopropyl)glycine = trans-(1S,3R)-1-amino-1,3-cyclopentanedicarboxylic acid (1S,3R-ACPD) > glutamate] differs from that reported for recombinantly expressed mGlu5a receptors. The expression of mGlu5a receptor mRNA and the occurrence of 1S,3R-ACPD-induced calcium signaling were found also in cultured microglia, indicating for the first time expression of mGlu5a receptors in these macrophage-like cells.  相似文献   
136.
1. -CgTx attenuated formalin-evoked biphasic flinches, while PKC inhibitor (STU) attenuated phase 2 and was reversed by PDBu.2. -CgTx and STU suppressed the increase in CSF-glutamate after formalin injection.3. Morphine completely suppressed both increased flinching and CSF glutamate release.4. Thus, -CgTx (N-type Ca channels) may regulate neurotransmitter release evoked by C fiber activation and the formalin-evoked hyperalgesia may possibly be provoked as a result of PKC activation elicited by both presynaptic neurotransmitter release and activation of NMDA receptors in the spinal neurons.  相似文献   
137.
The release of the inhibitory amino acid -alanine was investigated in hippocampal slices from adult (3-month-old) and developing (7-day-old) mice, using a superfusion system. The release was enhanced by -alanine itself and the structural analogs taurine and -aminobutyrate. It was dependent on Na+, but independent of Ca2+ in both mature and immature hippocampus, being thus mostly mediated by uptake carriers operating in an outward direction. The release was potentiated in the developing mice, but not affected in the adults, by the ionotropic glutamate receptor agonists N-methyl-D-aspartate, kainate, 2-amino-3-hydroxy-5-methyl-4-isoxazolepropionate and tetrazolylglycine in a receptor-mediated manner. Cell-damaging conditions, including hypoxia, hypoglycemia, ischemia, oxidative stress and the presence of free radicals, greatly enhanced -alanine release at both ages, but more markedly in the adults. The great amounts of -alanine, together with the inhibitory amino acids taurine and -aminobutyrate, released simultaneously with the excitatory amino acids in the hippocampus may constitute an important protective mechanism against excitotoxicity, which leads to neuronal death.  相似文献   
138.
In the present study we investigate the effects of a specific glutamate reuptake blocker, L-trans-pyrrolidine-3,4-dicarboxylic acid (PDC), on extracellular concentrations of glutamine and glutamate in the striatum of the freely moving rat. Intracerebral infusions of PDC (1, 2 and 4 mM) produced a dose-related increase in extracellular concentrations of glutamate and a dose-related decrease in extracellular concentrations of glutamine. These increases in extracellular glutamate and decreases in extracellular glutamine were significantly correlated. To investigate the involvement of ionotropic glutamate receptors in the decreases of extracellular glutamine produced by PDC, N-methyl-D-aspartate (NMDA) receptor antagonist and -amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/kainate receptor antagonist were used. Perfusion of the NMDA receptor antagonist blocked the decrease of extracellular glutamine but had no effect on the increase of extracellular glutamate, both produced by PDC. Perfusion of the AMPA/kainate receptor antagonist attenuated the increase of extracellular glutamate and not only blocked the decrease of extracellular glutamine but also produced a significant increase of extracellular glutamine. The results reported in this study suggest that both NMDA and AMPA/kainate glutamatergic receptors are involved in the regulation of extracellular glutamine.  相似文献   
139.
We demonstrated synchronous oscillation of intracellular Ca2+ in cultured-mouse mid-brain neurons. This synchronous oscillation was thought to result from spontaneous and synchronous neural bursts in a synaptic neural network. We also examined the role of endogenous dopamine in neural networks showing synchronous oscillation. Immunocytochemical study revealed a few tyrosine hydroxylase (TH)-positive dopaminergic neurons, and that cultured neurons expressed synaptophysin and synapsin I. Western blot analyses comfirmed synaptophysin, TH, and 2 types of dopamine receptor (DR), D1R and D2R expression. The synchronous oscillation in midbrain neurons was abolished by the application of R(-)-2-amino-5-phosphonopentanoic acid (AP-5) as an N-methyl-D-aspartate receptor (NMDAR) antagonist. This result suggests that the synchronous oscillation in midbrain neurons requires glutamatergic transmissions, as was the case in previously reported cortical neurons. SCH-12679, a D1R antagonist, inhibited synchronous oscillation in midbrain neurons, while raclopride, a D2R antagonist, induced a transient increase of intracellular Ca2+ and inhibited synchronous oscillation. We consider that endogenous dopamine maintains synchronous oscillation of intracellular Ca2+ through D1R and D2R, and that these DRs regulate intracellular Ca2+in distinctly different ways. Synchronous oscillation of midbrain neurons would be a useful tool for in vitro researches into various neural disorders directly or indirectly caused by dopaminergic neurons.  相似文献   
140.
Prostate specific membrane antigen (PSMA), is a unique membrane bound glycoprotein, which is overexpressed manifold on prostate cancer as well as neovasculature of most of the solid tumors, but not in the vasculature of the normal tissues. This unique expression of PSMA makes it an important marker as well as a large extracellular target of imaging agents. PSMA can serve as target for delivery of therapeutic agents such as cytotoxins or radionuclides. PSMA has two unique enzymatic functions, folate hydrolase and NAALADase and found to be recycled like other membrane bound receptors through clathrin coated pits. The internalization property of PSMA leads one to consider the potential existence of a natural ligand for PSMA. In this review we have discussed the regulation of PSMA expression within the cells, and significance of its expression in prostate cancer and metastasis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号