首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2255篇
  免费   96篇
  国内免费   34篇
  2023年   16篇
  2022年   26篇
  2021年   46篇
  2020年   44篇
  2019年   42篇
  2018年   38篇
  2017年   24篇
  2016年   37篇
  2015年   57篇
  2014年   89篇
  2013年   126篇
  2012年   84篇
  2011年   98篇
  2010年   79篇
  2009年   90篇
  2008年   122篇
  2007年   108篇
  2006年   109篇
  2005年   105篇
  2004年   119篇
  2003年   101篇
  2002年   111篇
  2001年   103篇
  2000年   54篇
  1999年   58篇
  1998年   52篇
  1997年   39篇
  1996年   42篇
  1995年   49篇
  1994年   53篇
  1993年   26篇
  1992年   33篇
  1991年   18篇
  1990年   11篇
  1989年   28篇
  1988年   18篇
  1987年   16篇
  1986年   16篇
  1985年   18篇
  1984年   10篇
  1983年   8篇
  1982年   5篇
  1981年   12篇
  1980年   10篇
  1979年   5篇
  1978年   5篇
  1976年   5篇
  1975年   5篇
  1974年   4篇
  1973年   7篇
排序方式: 共有2385条查询结果,搜索用时 15 毫秒
101.
In this study, we analyzed the toxic effect of Ni during the development of wheat shoots. Typical developmental alterations in carbon metabolism-related parameters reflecting changes associated with the transition of the seedlings from heterotrophic to autotrophic metabolism were observed in the control shoots between the 1st and the 4th days. Adverse effects of 50 and 100 μM Ni became evident starting from the 4th day of growth on the metal-containing media. We found that Ni-induced stimulation of phosphoenolpyruvate carboxylase (PEPC) activity coincided with decrease in the ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) level and with declines in net photosynthetic rate (PN) and stomatal conductance (gs). Application of Ni resulted in increased activities of several dehydrogenases: glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), isocitrate dehydrogenase (NADP-ICDH) and malate dehydrogenase (NADH-MDH). In contrast, the activities of malic enzymes (NADP-ME and NAD-ME) decreased due to Ni stress. Treatment with Ni led to accumulation of glucose and declined concentration of sucrose as well as considerable increases in concentrations of malic and citric acids. Our results indicate that Ni stress redirects the carbon metabolism of developing wheat shoots to provide carbon skeletons for synthesis of amino acids and organic acids as well as to supply reducing power to sustain normal metabolic processes and to support defense mechanisms against oxidative stress.  相似文献   
102.
The effect of long-term calorie restriction (CR) on metabolites, fatty acid profiles and energy substrate transporter expression in the brain was assessed in aged rats. Three groups of male Sprague–Dawley rats were studied: (i) a 2 month old ad libitum-fed (2AL group), (ii) a 19 month old ad libitum-fed (19AL group), and (iii) a 19 month old group subjected to 40% CR from the age of 7.5 to 19 months (19CR group). The diet contained high sucrose and low n-3 polyunsaturated fatty acids (PUFA) so as to imitate a Western-style diet. High resolution magic angle spinning-1H NMR showed an effect of aging on brain cortex metabolites compared to 2AL rats, the largest differences being for myo-inositol (+251% and +181%), lactate (+203% and +188%), β-hydroxybutyrate (+176% and +618%) and choline (+148% and +120%), in 19AL and 19 CR rats, respectively. However, brain metabolites did not differ between the 19AL and 19CR groups. Cortex fatty acid profiles showed that n-3 PUFA were 35–47% lower but monounsaturated fatty acids were 40–52% higher in 19AL and 19CR rats compared to 2AL rats. Brain microvessel glucose transporter (GLUT1) was 68% higher in 19AL rats than in 2AL rats, while the monocarboxylate transporter, MCT1, was 61% lower in 19CR rats compared to 19AL rats. We conclude that on a high-sucrose, low n-3 PUFA diet, the brain of aged AL rats had higher metabolites and microvessel GLUT1 expression compared to 2AL rats. However, long-term CR in aged rats did not markedly change brain metabolite or fatty acid profile, but did reduce brain microvessel MCT1 expression.  相似文献   
103.
Exposure to chronic drugs of abuse has been reported to produce significant changes in postsynaptic protein profile, dendritic spine morphology and synaptic transmission. In the present study we demonstrate alterations in dendritic spine morphology in the frontal cortex and nucleus accumbens of mice following chronic morphine treatment as well as during abstinence for two months. Such alterations were accompanied with significant upregulation of the postsynaptic protein Shank1 in synaptosomal enriched fractions. mRNA levels of Shank1 was also markedly increased during morphine treatment and during withdrawal. Studies of the different postsynaptic proteins at the protein and mRNA levels showed significant alterations in the morphine treated groups compared to that of saline treated controls. Taken together, these observations suggest that Shank1 may have an important role in the regulation of spine morphology induced by chronic morphine leading to addiction.  相似文献   
104.
Glutamate-mediated excitotoxicity is now accepted as a major mechanism of ischemic neuronal damage. In the infarct core region, massive neuronal death is observed, but neurons in the surroundings of the core (ischemic penumbra) seem viable at the time of stroke. Several hours or days after a stroke, however, many neurons in the penumbra will undergo delayed neuronal death (DND). The mechanisms responsible for such DND are not fully understood. In this study, we investigated whether and how glutamate-mediated localized excitotoxic neuronal death affects surrounding neurons and astrocytes. To induce spatially-restricted excitotoxic neuronal death, a caged glutamate was focally photolyzed by a UV flash in neuron/astrocyte co-cultures. Uncaging of the glutamate resulted in acute neuronal death in the flashed area. After that, DND was observed in the surroundings of the flashed area late after the uncaging. In contrast, DND was not observed in neuron-enriched cultures, suggesting that functional changes in astrocytes, not neurons, after focal acute neuronal death were involved in the induction of DND. The present in vitro study showed that the spatially-restricted excitotoxic neuronal death resulted in DND in the surroundings of the flashed area, and suggested that the nitric oxide (NO)-induced reduction in the expression of astrocytic GLT-1 was responsible for the occurrence of the DND.  相似文献   
105.
Like their animal counterparts, plant glutamate receptor‐like (GLR) homologs are intimately associated with Ca2+ influx through plasma membrane and participate in various physiological processes. In pathogen‐associated molecular patterns (PAMP)‐/elicitor‐mediated resistance, Ca2+ fluxes are necessary for activating downstream signaling events related to plant defense. In this study, oligogalacturonides (OGs), which are endogenous elicitors derived from cell wall degradation, were used to investigate the role of Arabidopsis GLRs in defense signaling. Pharmacological investigations indicated that GLRs are partly involved in free cytosolic [Ca2+] ([Ca2+]cyt) variations, nitric oxide (NO) production, reactive oxygen species (ROS) production and expression of defense‐related genes by OGs. In addition, wild‐type Col‐0 plants treated with the glutamate‐receptor antagonist 6,7‐dinitriquinoxaline‐2,3‐dione (DNQX) had a compromised resistance to Botrytis cinerea and Hyaloperonospora arabidopsidis. Moreover, we provide genetic evidence that AtGLR3.3 is a key component of resistance against Harabidopsidis. In addition, some OGs‐triggered immune events such as defense gene expression, NO and ROS production are also to different extents dependent on AtGLR3.3. Taken together, these data provide evidence for the involvement of GLRs in elicitor/pathogen‐mediated plant defense signaling pathways in Arabidopsis thaliana.  相似文献   
106.
Ionotropic glutamate receptors belong to the superfamily of P-loop channels as well as K+, Na+, and Ca2+ channels. However, the structural similarity between ion channels of the glutamate receptors and K+ channels is a matter of discussion. The aim of this study was to analyze differences between the structures of K+ channels and glutamate receptor channels. For this purpose, homology models of NMDA and AMPA receptor channels (M2 and M3 segments) were built using X-ray structures of K+ channels as templates. The models were optimized and used to reproduce specific data on the structure of glutamate receptor channels. Particular attention was paid to the data of the binding of channel blockers and to the results of scanning mutagenesis. The modeling demonstrates that properties of glutamate receptor channel can be reproduced assuming only local structural deformations of the K+ channel templates. The most valuable differences were found in the selectivity-filter region, whereas helical parts of M2 and M3 segments could have similar spatial organization with homologous segments in K+ channels. It is concluded that the current experimental data on glutamate receptor channels does not reveal global structural differences with K+ channels.  相似文献   
107.
An NADP-specific glutamate dehydrogenase [L-glutamate: NADP+ oxidoreductase (deaminating), EC 1.4.1.4] from alkaliphilic Bacillus sp. KSM-635 was purified 5840-fold to homogeneity by a several-step procedure involving Red-Toyopearl affinity chromatography. The native protein, with an isoelectric point of pH 4.87, had a molecular mass of approximately 315 kDa consisting of six identical summits each with a molecular mass of 52 kDa. The pH optima for the aminating and deaminating reactions were 7.5 and 8.5, respectively. The optimum temperature was around 60°C for both. The purified enzyme had a specific activity of 416units/mg protein for the aminating reaction, being over 20-fold greater than that for deaminating reaction, at the respective pH optima and at 30°C. The enzyme was specific for NADPH (Km 44 μM), 2-oxoglutarate (Km 3.13 mM), NADP+ (Km 29 μM), and L-glutamate (Km 6.06 mM). The Km for NH4Cl was 5.96 mM. The enzyme could be stored without appreciable loss of enzyme activity at 5°C for half a year in phosphate buffer (pH 7.0) containing 2 mM 2-mercaptoethanol, although the enzyme activity was abolished within 20 h by freezing at ?20°C.  相似文献   
108.
The oxidization of fatty acids generates many volatile compounds forming an aroma, but little is known whether mammals use gustatory sense to detect the oxidized products as a taste or only use olfactory sense to detect as an aroma. We examined in this study the effect of aqueous extracts of the compounds from autoxidized arachidonic acid (AA) ethyl ester or hexanal which is the predominant component generated from oxidized AA by the anosmic mouse licking performance to a tastant. The addition of the water extract from oxidized AA or hexanal to a quinine hydrochloride (QHCl) solution decreased the anosmic mice licking frequency at several concentrations of QHCl. Hexanal also reduced the licking frequency of anosmic mice conditioned to avoid MSG at several concentrations of monosodium glutamate (MSG). These results suggest that hexanal would affect mouse taste perception to QHCl and MSG via the gustatory sensation.  相似文献   
109.
We previously found a very large NAD-dependent glutamate dehydrogenase with approximately 170?kDa subunit from Janthinobacterium lividum (Jl-GDH) and predicted that GDH reaction occurred in the central domain of the subunit. To gain further insights into the role of the central domain, several single point mutations were introduced. The enzyme activity was completely lost in all single mutants of R784A, K810A, K820A, D885A, and S1142A. Because, in sequence alignment analysis, these residues corresponded to the residues responsible for glutamate binding in well-known small GDH with approximately 50?kDa subunit, very large GDH and well-known small GDH may share the same catalytic mechanism. In addition, we demonstrated that C1141, one of the three cysteine residues in the central domain, was responsible for the inhibition of enzyme activity by HgCl2, and HgCl2 functioned as an activating compound for a C1141T mutant. At low concentrations, moreover, HgCl2 was found to function as an activating compound for a wild-type Jl-GDH. This suggests that the mechanism for the activation is entirely different from that for the inhibition.  相似文献   
110.
The function of the NCgl1221-encoded protein of Corynebacterium glutamicum was analyzed using Bacillus subtilis as host because a method for preparing the giant provacuole required for electrophysiological studies has been established. Expression of NCgl1221 in a strain deficient in mscL and ykuT, both of which encode mechanosensitive channels, resulted in an 8.9-fold higher cell survival rate upon osmotic downshock than the control. Electrophysiological investigation showed that the giant provacuole prepared from this strain, expressing NCgl1221, exhibited significantly higher pressure-dependent conductance than the control. These findings show that the NCgl1221-encoded protein functions as a mechanosensitive channel.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号