首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13400篇
  免费   971篇
  国内免费   676篇
  2024年   39篇
  2023年   286篇
  2022年   422篇
  2021年   571篇
  2020年   490篇
  2019年   543篇
  2018年   573篇
  2017年   403篇
  2016年   417篇
  2015年   518篇
  2014年   610篇
  2013年   881篇
  2012年   427篇
  2011年   489篇
  2010年   359篇
  2009年   485篇
  2008年   490篇
  2007年   553篇
  2006年   475篇
  2005年   428篇
  2004年   374篇
  2003年   384篇
  2002年   347篇
  2001年   240篇
  2000年   221篇
  1999年   234篇
  1998年   255篇
  1997年   216篇
  1996年   230篇
  1995年   215篇
  1994年   234篇
  1993年   225篇
  1992年   223篇
  1991年   183篇
  1990年   170篇
  1989年   180篇
  1988年   129篇
  1987年   148篇
  1986年   136篇
  1985年   193篇
  1984年   188篇
  1983年   126篇
  1982年   142篇
  1981年   138篇
  1980年   100篇
  1979年   98篇
  1978年   61篇
  1977年   50篇
  1976年   50篇
  1975年   31篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
81.
Abstract The regulation of crassulacean acid metabolism (CAM) under controlled environmental conditions has been investigated for two tropical epiphytes, relating plant water and carbon balance to growth form and habitat preference under natural conditions. Aechmea fendleri is restricted to wet, upper montane regions of Trinidad, while A. nudicaulis has a wider distribution extending into more arid regions of the island. Morphological characteristics of these plants are related to habitat preference in terms of leaf succulence (0.44 and 0.94 kg m?2 for the two species respectively) and a distinct layer of water storage parenchyma in A. nudicaulis In contrast, the thinner leaves of A. fendleri contain little water-storage parenchyma and less chlorenchyma per unit area, but the plants have a more open leaf rosette. The two species differ in expression of CAM, since the proportion of respiratory CO2 recycled as part of CAM had been found to be much lower in A. fendleri This study compared the efficiency of water use and role of respiratory CO2 recycling under two PAR regimes (300 and 120 μnol m?2 s?1) and three night temperatures (12, 18 and 25 °C). Dark CO2 uptake rates for both species were comparable to plants in the field (maximum of 2.3 ± 0.2 μmol m?2s?1± SD, n= 3). Total net CO2 uptake at night increased on leaf area basis with temperature for both species under higher PAR, although under the low PAR regime CO2 uptake was maximal at 18 °C. Water-use efficiency (WUE) increased at 18 °C and 25 °C during dark CO2 uptake (Phase I) and also during late afternoon photosynthesis (Phase IV) in both species. For A. fendleri, dawn to dusk changes in titrable acidity (ΔH +) were similar under high and low PAR, although ΔH+ was correlated to night temperature and PAR in A. nudicaulis. The proportion of ΔH+ derived from respiratory CO2 also varied with experimental conditions. Thus percentage recycling was lower in A. fendleri under high PAR (0–10%), but was only reduced at 18 °C under low PAR. Recycling by A. nudicaulis ranged from 32–42% under high PAR, but was also reduced to 6% under low PAR at 18 °C; at 12 °C and 25 °C, recycling was 37% and 52% respectively. Previous studies have suggested a relationship between the proportion of recycling and degree of water stress. This study indicated that CAM as a CO2 concentrating mechanism regulates both water-use efficiency and plant carbon balance in these epiphytes, in response to PAR and night temperature. However, the precise relationship between respiratory processes and the balance between external and internal sources of CO2 is as yet unresolved.  相似文献   
82.
Although various proteins and some electrolytes have been measured in human saliva, little systematic data about the major and minor elemental components of this body fluid have been obtained. In order to obtain such data, concentrations of C, Na, P, Cl, K, Ca, Sc, Cr, Fe, Co, Zn, Se, Br, Rb, Sb, I, and Cs in human parotid saliva were measured by instrumental nuclear methods. The data obtained confirmed the relative lack of Zn in saliva of patients with hypogeusia (decreased taste acuity) and suggested that concentrations of Na, Cl, Br, and Ca followed the order: normals > hypogeusia > hyposmia (decreased smell acuity). To compare concentrations of elements in saliva with those in blood and urine, absolute concentrations were normalized to that of Na through the use of a concept called an enrichment factor. On this basis, parotid saliva is relatively depleted in Se, Zn, and Fe and enriched for most other elements relative to blood plasma indicating that the fluid is not simply a transudate of blood plasma. Using this same technique, saliva composition was found more similar to urine than blood plasma, being relatively depleted in Se, Cs, and Co, being enriched in I, Br, and Cr and having about the same relative concentrations of P, Cl, Zn, Fe, Ca, K, and Rb. As the total body concentrations of many of the enriched elements in saliva are extremely small, their enrichment in saliva suggests special roles for these elements in the oral cavity. Because of its accessibility, ease of collection, and interaction with some body constituents, saliva represents a useful, albeit neglected, tool in the diagnosis of some physiological and pathological changes in body function and in understanding important aspects of trace metal metabolism.  相似文献   
83.
The growth of the protozoanBlepherisma is stimulated by Lanthanum (La) at concentrations as low as 0.32 ppm. In mice Yttrium (Y) and Ytterbium (Yb) are absorbed, accumulated, and metabolized. Both rare earth elements (RE) exhibit a high affinity for teeth and bones, accumulation occurs and metabolism is slow. In the livers of RE-exposed mice, concentrations are variable. The liver is apparently capable of absorbing and discharging RE in a manner depending on metabolic activity. The main route of discharge for ingested REs is the alimentary canal. Exposure of pregnant mice to RE leads to rapid placental transfer of RE; 14.1% of the total amount of RE administered was detected in newborn mice. Young, developing organisms appear to be especially susceptible to RE accumulation.  相似文献   
84.
Mesembryanthemum crystallinum responds to high salinity in the soil by shifting the mode of carbon assimilation from the C3 mode to Crassulacean acid metabolism (CAM). Several enzymes of carbon metabolism have increased apparent activities in the CAM mode, including phosphoenolpyruvate carboxylase (PEPcase) and pyruvate orthophosphate dikinase (PPDK). We have identified cDNA clones for PEPcase and PPDK by immunological screening of a cDNA library constructed in the protein expression vector lambda gt11. The clones were characterized by immunoblotting and RNA blotting techniques. RNA blotting showed that during CAM induction the steady-state level of mRNAs for both PEP case and PPDK increased.Abbreviations IPTG isopropyl thiogalactoside - PEP phosphoenolpyruvate - PEPcase phosphoenolpyruvate carboxylase - PPDK pyruvate orthophosphate dikinase - Xgal-5 bromo-4-chloro-3-indolyl-beta-D-galactopyranoside  相似文献   
85.
beta-Methyleneaspartate, a specific inhibitor of aspartate aminotransferase (EC 2.6.1.1.), was used to investigate the role of the malate-aspartate shuttle in rat brain synaptosomes. Incubation of rat brain cytosol, "free" mitochondria, synaptosol, and synaptic mitochondria, with 2 mM beta-methyleneaspartate resulted in inhibition of aspartate aminotransferase by 69%, 67%, 49%, and 76%, respectively. The reconstituted malate-aspartate shuttle of "free" brain mitochondria was inhibited by a similar degree (53%). As a consequence of the inhibition of the aspartate aminotransferase, and hence the malate-aspartate shuttle, the following changes were observed in synaptosomes: decreased glucose oxidation via the pyruvate dehydrogenase reaction and the tricarboxylic acid cycle; decreased acetylcholine synthesis; and an increase in the cytosolic redox state, as measured by the lactate/pyruvate ratio. The main reason for these changes can be attributed to decreased carbon flow through the tricarboxylic acid cycle (i.e., decreased formation of oxaloacetate), rather than as a direct consequence of changes in the NAD+/NADH ratio. Malate/glutamate oxidation in "free" mitochondria was also decreased in the presence of 2 mM beta-methyleneaspartate. This is probably a result of decreased glutamate transport into mitochondria as a result of low levels of aspartate, which are needed for the exchange with glutamate by the energy-dependent glutamate-aspartate translocator.  相似文献   
86.
Summary Addition of glucose or the nonmetabolizable analogue -methyl-d-glucoside to rabbit proximal tubules suspended in a glucoseand alanine-free buffer caused a sustained increase in intracellular Na+ content (+43±7 nmol · (mg protein)–1) and a concomitant but larger decrease in K+ content (–72±11 nmol· (mg protein)–1). A component of the net K+ efflux was Ba2+ insensitive, and was inhibited by high (1mm) but not low (10 m) concentrations of the diuretics, furosemide and bumetanide. The increase in intracellular Na+ content is consistent with the view that the increased rates of Na+ and water transport seen in the proximal tubule in the presence of glucose can be attributed (at least in part) to a stimulation of basolateral pump activity by an increased [Na+] i .  相似文献   
87.
Juvenile Terebratalia transversa (Brachiopoda) metabolize carbohydrates in the anterior-most marginal mantle at a rate of 0.46 μM glucose/g/hr (in vitro incubation of mantle in C14-glucose in a carrying medium of 10-3 M non-radioactive glucose). The rate declines to 0.18μM glucose/g/hr in full-grown specimens. Carbohydrate metabolism in the marginal (anterior-most) mantle averages approximately 3.7 times greater than metabolism in (a portion of the ‘posterior’) mantle situated between the coelomic canals and the marginal mantle. This ratio remains constant in specimens of all sizes (i.e. an ontogenetic trend in the ratio is absent at p≤ 0.05). Organic acids are not detectable within the mantle (HPLC techniques) even after simulated anoxia (N2 bubbling during mantle incubation). Glucose metabolism in vitro declines in both the marginal and ‘posterior’ mantles during anoxia and the metabolic ratio between marginal/‘posterior’ mantles becomes 1/1. We found no difference (at p≤ 0.05) in mean metabolic activity or in sue-related metabolic trends among populations from depths ranging between mean sea level and 70 m. However, the activity within the ‘posterior’ mantle was more variable in specimens from 70 m than in those from shallower habitats (10 m - mean sea level). The size of the specimens analyzed was most variable in the groups obtained from the shallowest habitats and least variable at 70 m depth. Our results may help define the energetics of fossil as well as living brachiopod shell growth. Brachiopod shell growth is known to be very slow relative to that of bivalves and our results indicate that this is a result of the animals' slow metabolism. The inflation of the valves in T. transversa is, in part, a function of the high ratio of intermediary metabolism in the marginal vs‘posterior’ mantle (i.e. parallels the relative growth rates at the shell margin vs‘posterior’ areas). We found that the bivalve, Chlamys hastata, which is commonly associated with T. transversa, has a lower ratio of metabolic activities in the ventral/dorsal mantle areas than the brachiopod has in the anterior/posterior. The difference produces a flatter shell in the bivalve in accord with allometric principles. The higher metabolic rate in the marginal vs‘posterior’ brachiopod mantle and its more pronounced decline with anaerobiosis is reflected in the greater definition of growth increments in the outer shell layer. Our results do not support recent generalizations that correlate shell thickness of a wide variety of invertebrates inversely with metabolic rate. Growth rate as determined from width of shell growth increments is a better index of metabolic rate. Although the genetic basis of glucose metabolism is unknown, the observed metabolic variability is consistent with suggestions that populations of marine organisms living in stable offshore environments are genetically more variable but morphologically more uniform than populations from shallow water. Furthermore, our results support suggestions that bivalved molluscs and brachiopods are very different metabolically, but the data are neutral with respect to theories of competitive exclusion of the two taxa throughout geologic history.  相似文献   
88.
A dependence of the plasmalemma redox activity, determined by the reduction of external electron acceptors (ferricyanide, nitro-blue tetrazolium), on the energy state of the cell, which was modified by light conditions or introduction of glucose into the media, was shown on leaves of Elodea canadensis Rich. Glucose (10 m M ) and light (40 W m-2) caused hyperpolarization of the membrane potential and stimulated the redox activity of the plasmalemma. 3-(3,4-Dichlorophenyl)-1,1-dimethylurea (DCMU) completely inhibited the light activation of electrogenic and redox functions of the plasmalemma. The light saturation intensity for membrane potential and ferricyanide reductase activity was 10–30% of the light saturation of photosynthesis. Membrane potential, K+ transport and plasmalemma redox activity changed in parallel in response to light and darkness and when DCMU was added. Ferricyanide reductase activity is suggested to be a simple parameter for characterizing the energy state of the cell. The functional significance of the light-induced hyperpolarization of the membrane potential is discussed.  相似文献   
89.
Respiration and soluble sugar metabolism in sugar pine embryos   总被引:1,自引:0,他引:1  
Embroys excised from dormant seeds of sugar pine ( Pinus lambertiana Dougl.) incubated at 25°C (non-dormancy-breaking) or stratified at 5°C (dormancy-breaking) were analyzed to determine temperature effects on the relative activities of respiration and fermentative metabolism, the levels of soluble sugers and the activities of the hydrolytic enzymes, invertase and sucrose synthase, as related to the release of dormancy and germinatio. At 25°C, despite a sharp drop in embryo oxygen uptake after 48 h, a simultaneous decline in acetaldehyde and ethanol concentrations indicated that there was not a shift to fermentative metabolism. The concentrations of soluble sugars showed no treatment effects. Embryo invertase (EC 3.2.1.26) activity changed only slightly at either temperature, while stratification was accompanied by a 4-fold increase in sucrose synthase (EC 2.4.1.13) activity (cleavage direction). Upon transfer of stratified seeds to 25°C, embryo sucrose synthase activity rapidly increased almost 10-fold, with the increase beginning prior to germination, while mvertase activity increased 20-fold, concomitant with germination.  相似文献   
90.
Benzyladenine (BA) was found to regulate the number of flower buds regenerated in vitro from pedicel tissue of tobacco. Flower bud induction was particularly sensitive to BA levels in the range of 0.45 to 1.0 μ M , where a two-fold increase in concentration caused a threefold rise in the number of buds. When tissues were fed radioactive BA for 24h, only 9–12% of the counts were recovered in the original compound. The rest was present in metabolites, tentatively identified as the mono-, di- and triribotides, 7- and 9-glucosides and 9-riboside of BA. The amount of growth regulator taken up and the quantities of BA and its metabolites in the explants were all linearly related to the concentration of the medium. The internal BA concentration was ca 60% of the level in the medium after 24 h. When the concentration in the medium was raised, relatively more BA remained in the non-conjugated form. However, this change in the equilibrium between BA and the conjugates is too small to account for the steep rise in the curve representing concentration vs effect between 0.45 and 1.0 μ M .  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号