首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20134篇
  免费   2004篇
  国内免费   1583篇
  2023年   454篇
  2022年   396篇
  2021年   490篇
  2020年   673篇
  2019年   840篇
  2018年   838篇
  2017年   743篇
  2016年   722篇
  2015年   715篇
  2014年   1074篇
  2013年   1383篇
  2012年   881篇
  2011年   990篇
  2010年   763篇
  2009年   920篇
  2008年   943篇
  2007年   1002篇
  2006年   844篇
  2005年   739篇
  2004年   653篇
  2003年   576篇
  2002年   491篇
  2001年   361篇
  2000年   385篇
  1999年   360篇
  1998年   299篇
  1997年   297篇
  1996年   273篇
  1995年   258篇
  1994年   216篇
  1993年   237篇
  1992年   197篇
  1991年   177篇
  1990年   170篇
  1989年   144篇
  1988年   151篇
  1987年   133篇
  1986年   133篇
  1985年   213篇
  1984年   344篇
  1983年   279篇
  1982年   274篇
  1981年   270篇
  1980年   296篇
  1979年   230篇
  1978年   174篇
  1977年   159篇
  1976年   132篇
  1975年   120篇
  1974年   115篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
881.
The occurrence of summer heat waves is predicted to increase in amplitude and frequency in the near future, but the consequences of such extreme events are largely unknown, especially for belowground organisms. Soil organisms usually exhibit strong vertical stratification, resulting in more frequent exposure to extreme temperatures for surface‐dwelling species than for soil‐dwelling species. Therefore soil‐dwelling species are expected to have poor acclimation responses to cope with temperature changes. We used five species of surface‐dwelling and four species of soil‐dwelling Collembola that habituate different depths in the soil. We tested for differences in tolerance to extreme temperatures after acclimation to warm and cold conditions. We also tested for differences in acclimation of the underlying physiology by looking at changes in membrane lipid composition. Chill coma recovery time, heat knockdown time and fatty acid profiles were determined after 1 week of acclimation to either 5 or 20 °C. Our results showed that surface‐dwelling Collembola better maintained increased heat tolerance across acclimation temperatures, but no such response was found for cold tolerance. Concordantly, four of the five surface‐dwelling Collembola showed up to fourfold changes in relative abundance of fatty acids after 1 week of acclimation, whereas none of the soil‐dwelling species showed a significant adjustment in fatty acid composition. Strong physiological responses to temperature fluctuations may have become redundant in soil‐dwelling species due to the relative thermal stability of their subterranean habitat. Based on the results of the four species studied, we expect that unless soil‐dwelling species can temporarily retreat to avoid extreme temperatures, the predicted increase in heat waves under climatic change renders these soil‐dwelling species more vulnerable to extinction than species with better physiological capabilities. Being able to act under a larger thermal range is probably costly and could reduce maximum performance at the optimal temperature.  相似文献   
882.
Understanding how soil respiration (Rs) and its source components respond to climate warming is crucial to improve model prediction of climate‐carbon (C) feedback. We conducted a manipulation experiment by warming and clipping in a prairie dominated by invasive winter annual Bromus japonicas in Southern Great Plains, USA. Infrared radiators were used to simulate climate warming by 3 °C and clipping was used to mimic yearly hay mowing. Heterotrophic respiration (Rh) was measured inside deep collars (70 cm deep) that excluded root growth, while total soil respiration (Rs) was measured inside surface collars (2–3 cm deep). Autotrophic respiration (Ra) was calculated by subtracting Rh from Rs. During 3 years of experiment from January 2010 to December 2012, warming had no significant effect on Rs. The neutral response of Rs to warming was due to compensatory effects of warming on Rh and Ra. Warming significantly (P < 0.05) stimulated Rh but decreased Ra. Clipping only marginally (P < 0.1) increased Ra in 2010 but had no effect on Rh. There were no significant interactive effects of warming and clipping on Rs or its components. Warming stimulated annual Rh by 22.0%, but decreased annual Ra by 29.0% across the 3 years. The decreased Ra was primarily associated with the warming‐induced decline of the winter annual productivity. Across the 3 years, warming increased Rh/Rs by 29.1% but clipping did not affect Rh/Rs. Our study highlights that climate warming may have contrasting effects on Rh and Ra in association with responses of plant productivity to warming.  相似文献   
883.
Oxidative stress has been related to various diseases, gender and ageing, and has been measured by various markers. The authors developed a procedure to compute a global oxidative stress index (OXY-SCORE), reflecting both oxidative and antioxidant markers in healthy subjects. Its performance was tested in relation to age and gender and in coronary artery disease (CAD) patients. Eighty-two healthy subjects and 20 CAD patients were enrolled. Plasma free and total malondialdehyde (F- and T-MDA), glutathione disulphide/reduced form ratio (GSSG/GSH) and urine isoprostanes (iPF-III) levels were combined as oxidative damage markers (damage score). GSH, α- and γ-tocopherol (TH) levels, and individual antioxidant capacity were combined as antioxidant defence indexes (protection score). The OXY-SCORE was computed by subtracting the protection score from the damage score. Among single parameters, T-MDA and iPF-III significantly correlated with age; only GSH and both tocopherols correlated with male gender in healthy subjects. The OXY-SCORE was positively associated with age (p=0.004) and male gender (p=0.03). As expected, the OXY-SCORE was higher in CAD with a very significant p-value (<0.0001), after adjusting for age, gender and smoking. Combining different markers can potentially provide a powerful index in the evaluation of oxidative stress related to age, gender and CAD status.  相似文献   
884.
Prostate cancer (CaP) is the second leading malignancy in men. The role of epithelial cell adhesion molecule (EpCAM), also known as CD326, in CaP progression and therapeutic resistance is still uncertain. Here, we aimed to investigate the roles of EpCAM in CaP metastasis and chemo/radioresistance. Expression of EpCAM in CaP cell lines and human CaP tissues was assessed using immunofluorescence and immunohistochemistry, respectively. EpCAM was knocked down (KD) in PC-3, DU145 and LNCaP-C4-2B cells using small interfering RNA (siRNA), and KD results were confirmed by confocal microscope, Western blotting and quantitative real time polymerase chain reaction (qRT-PCR). Cell growth was evaluated by proliferation and colony formation assays. The invasive potential was assessed using a matrigel chamber assay. Tumorigenesis potential was measured by a sphere formation assay. Chemo-/radiosensitivity were measured using a colony formation assay. Over-expression of EpCAM was found in primary CaP tissues and lymph node metastases including cancer cells and surrounding stromal cells. KD of EpCAM suppressed CaP proliferation and invasive ability, reduced sphere formation, enhanced chemo-/radiosensitivity, and down-regulated E-cadherin, p-Akt, p-mTOR, p-4EBP1 and p-S6K expression in CaP cells. Our findings suggest that EpCAM plays an important role in CaP proliferation, invasion, metastasis and chemo-/radioresistance associated with the activation of the PI3K/Akt/mTOR signaling pathway and is a novel therapeutic target to sensitize CaP cells to chemo-/radiotherapy.  相似文献   
885.
RNA molecules have recently become attractive as potential drug targets due to the increased awareness of their importance in key biological processes. The increase of the number of experimentally determined RNA 3D structures enabled structure-based searches for small molecules that can specifically bind to defined sites in RNA molecules, thereby blocking or otherwise modulating their function. However, as of yet, computational methods for structure-based docking of small molecule ligands to RNA molecules are not as well established as analogous methods for protein-ligand docking. This motivated us to create LigandRNA, a scoring function for the prediction of RNA–small molecule interactions. Our method employs a grid-based algorithm and a knowledge-based potential derived from ligand-binding sites in the experimentally solved RNA–ligand complexes. As an input, LigandRNA takes an RNA receptor file and a file with ligand poses. As an output, it returns a ranking of the poses according to their score. The predictive power of LigandRNA favorably compares to five other publicly available methods. We found that the combination of LigandRNA and Dock6 into a “meta-predictor” leads to further improvement in the identification of near-native ligand poses. The LigandRNA program is available free of charge as a web server at http://ligandrna.genesilico.pl.  相似文献   
886.
887.

Aim

To provide deeper insights into nitrification process within aerobic bioreactors containing supplemental physical support media (hybrid bioreactors).

Methods and Results

Three bench‐scale hybrid bioreactors with different media size and one control bioreactor were operated to assess how biofilm integrity influences microbial community conditions and bioreactor performance. The systems were operated initially at a 5‐day hydraulic retention time (HRT), and all reactors displayed efficient nitrification and chemical oxygen demand (COD) removal (>95%). However, when HRT was reduced to 2·5 days, COD removal rates remained high, but nitrification efficiencies declined in all reactors after 19 days. To explain reduced performance, nitrifying bacterial communities (ammonia‐oxidizing bacteria, AOB; nitrite‐oxidizing bacteria, NOB) were examined in the liquid phase and also on the beads using qPCR, FISH and DGGE. Overall, the presence of the beads in a reactor promoted bacterial abundances and diversity, but as bead size was increased, biofilms with active coupled AOB–NOB activity were less apparent, resulting in incomplete nitrification.

Conclusions

Hybrid bioreactors have potential to sustain effective nitrification at low HRTs, but support media size and configuration type must be optimized to ensure coupled AOB and NOB activity in nitrification.

Significance and Impact of the Study

This study shows that AOB and NOB coupling must be accomplished to minimize nitrification failure.  相似文献   
888.

Aims

To assess human adenoviruses (HAdVs) removal in an advanced wastewater treatment facility and compare two parallel tertiary treatment methods for the removal of HAdVs.

Methods and Results

Tangential flow ultrafiltration was used to concentrate the water samples, and HAdVs were precipitated by polyethylene glycol. HAdVs were detected only by TaqMan real‐time PCR, and HAdV genotype was determined by DNA sequence. HAdVs were detected in 100% of primary clarification influent, secondary clarification effluent and granular media (GM) filtration effluent samples but only in 31·2% of membrane filtration (MF) effluent and 41·7% of final effluent (FE) samples, respectively. The average HAdVs loads were significantly reduced along the treatments but HAdVs were still present in FE. Comparison of two parallel treatments (GM vs MF) showed that MF was technically superior to GM for the removal of HAdVs.

Conclusions

These findings indicate that adenoviruses are not completely removed by treatment processes. MF is a better treatment for removal of adenoviruses than GM filtration. Because only qPCR was used, the results only indicate the removal of adenovirus DNA and not the infectivity of viruses.

Significance and Impact of the Study

Presence of HAdVs in FE by qPCR suggests a potential public health risk from exposure to the treated wastewater and using the FE for recreational or water reuse purposes should be cautious.  相似文献   
889.
Variations in seasonal snowfall regulate regional and global climatic systems and vegetation growth by changing energy budgets of the lower atmosphere and land surface. We investigated the effects of snow on the start of growing season (SGS) of temperate vegetation in China. Across the entire temperate region in China, the winter snow depth increased at a rate of 0.15 cm yr?1 (P = 0.07) during the period 1982–1998, and decreased at a rate of 0.36 cm yr?1 (P = 0.09) during the period 1998–2005. Correspondingly, the SGS advanced at a rate of 0.68 day yr?1 (P < 0.01) during 1982–1998, and delayed at a rate of 2.13 day yr?1 (P = 0.07) during 1998–2005, against a warming trend throughout the entire study period of 1982–2005. Spring air temperature strongly regulated the SGS of both deciduous broad‐leaf and coniferous forests, whereas the winter snow had a greater impact on the SGS of grassland and shrubs. Snow depth variation combined with air temperature contributed to the variability in the SGS of grassland and shrubs, as snow acted as an insulator and modulated the underground thermal conditions. In addition, differences were seen between the impacts of winter snow depth and spring snow depth on the SGS; as snow depths increased, the effect associated went from delaying SGS to advancing SGS. The observed thresholds for these effects were snow depths of 6.8 cm (winter) and 4.0 cm (spring). The results of this study suggest that the response of the vegetation's SGS to seasonal snow change may be attributed to the coupling effects of air temperature and snow depth associated with the underground thermal conditions.  相似文献   
890.
We review the evidence of how organisms and populations are currently responding to climate change through phenotypic plasticity, genotypic evolution, changes in distribution and, in some cases, local extinction. Organisms alter their gene expression and metabolism to increase the concentrations of several antistress compounds and to change their physiology, phenology, growth and reproduction in response to climate change. Rapid adaptation and microevolution occur at the population level. Together with these phenotypic and genotypic adaptations, the movement of organisms and the turnover of populations can lead to migration toward habitats with better conditions unless hindered by barriers. Both migration and local extinction of populations have occurred. However, many unknowns for all these processes remain. The roles of phenotypic plasticity and genotypic evolution and their possible trade‐offs and links with population structure warrant further research. The application of omic techniques to ecological studies will greatly favor this research. It remains poorly understood how climate change will result in asymmetrical responses of species and how it will interact with other increasing global impacts, such as N eutrophication, changes in environmental N : P ratios and species invasion, among many others. The biogeochemical and biophysical feedbacks on climate of all these changes in vegetation are also poorly understood. We here review the evidence of responses to climate change and discuss the perspectives for increasing our knowledge of the interactions between climate change and life.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号