首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13085篇
  免费   2389篇
  国内免费   1610篇
  17084篇
  2024年   76篇
  2023年   584篇
  2022年   381篇
  2021年   517篇
  2020年   911篇
  2019年   937篇
  2018年   862篇
  2017年   891篇
  2016年   843篇
  2015年   833篇
  2014年   891篇
  2013年   1023篇
  2012年   650篇
  2011年   645篇
  2010年   578篇
  2009年   745篇
  2008年   717篇
  2007年   657篇
  2006年   570篇
  2005年   522篇
  2004年   441篇
  2003年   335篇
  2002年   297篇
  2001年   247篇
  2000年   276篇
  1999年   190篇
  1998年   187篇
  1997年   143篇
  1996年   125篇
  1995年   145篇
  1994年   104篇
  1993年   81篇
  1992年   72篇
  1991年   60篇
  1990年   51篇
  1989年   40篇
  1988年   40篇
  1987年   36篇
  1986年   46篇
  1985年   49篇
  1984年   41篇
  1983年   32篇
  1982年   48篇
  1981年   26篇
  1980年   38篇
  1979年   38篇
  1978年   13篇
  1977年   11篇
  1976年   9篇
  1975年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
101.
The morph ratio distribution in polymorphic species often varies clinally, with a gradual change in morph ratios across the distributional range of the species. In polymorphic bird populations, clinal variation is rarely quantified. We describe a cline in the morph ratios of Black Sparrowhawks across South Africa, which is principally driven by a higher ratio of dark morph birds in the newly colonized southwest of the country. Across the 1400 km of our cline, the probability of a bird being a dark morph declined from over 80% close to the Cape Peninsula to under 20% in the northeast. Higher frequencies of dark morphs were associated with a higher proportion of rainfall falling during the winter breeding months. Further investigation revealed relationships between the proportion of dark morphs and altitude, amount of rainfall during the breeding months, and an interaction between this variable and temperature. These results provide some support for the suggestion that the higher frequency of dark morphs in the southwest is an adaptive response, rather than the result of a founder effect or genetic drift. These findings also suggest that, in theory, polymorphic species may be better adapted to cope with the challenges of climate change or may be able to expand their ranges more quickly into novel climatic areas, since selection pressure can act on a pre‐existing trait that may be beneficial in new conditions.  相似文献   
102.
103.
The study of protein function usually requires the use of a cloned version of the gene for protein expression and functional assays. This strategy is particularly important when the information available regarding function is limited. The functional characterization of the thousands of newly identified proteins revealed by genomics requires faster methods than traditional single‐gene experiments, creating the need for fast, flexible, and reliable cloning systems. These collections of ORF clones can be coupled with high‐throughput proteomics platforms, such as protein microarrays and cell‐based assays, to answer biological questions. In this tutorial, we provide the background for DNA cloning, discuss the major high‐throughput cloning systems (Gateway® Technology, Flexi® Vector Systems, and CreatorTM DNA Cloning System) and compare them side‐by‐side. We also report an example of high‐throughput cloning study and its application in functional proteomics. This tutorial is part of the International Proteomics Tutorial Programme (IPTP12).  相似文献   
104.
A large‐scale comparison of essential dynamics (ED) modes from molecular dynamic simulations and normal modes from coarse‐grained normal mode methods (CGNM) was performed on a dataset of 335 proteins. As CGNM methods, the elastic network model (ENM) and the rigid cluster normal mode analysis (RCNMA) were used. Low‐frequency normal modes from ENM correlate very well with ED modes in terms of directions of motions and relative amplitudes of motions. Notably, a similar performance was found if normal modes from RCNMA were used, despite a higher level of coarse graining. On average, the space spanned by the first quarter of ENM modes describes 84% of the space spanned by the five ED modes. Furthermore, no prominent differences for ED and CGNM modes among different protein structure classes (CATH classification) were found. This demonstrates the general potential of CGNM approaches for describing intrinsic motions of proteins with little computational cost. For selected cases, CGNM modes were found to be more robust among proteins that have the same topology or are of the same homologous superfamily than ED modes. In view of recent evidence regarding evolutionary conservation of vibrational dynamics, this suggests that ED modes, in some cases, might not be representative of the underlying dynamics that are characteristic of a whole family, probably due to insufficient sampling of some of the family members by MD. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   
105.
祁连山作为我国重要的生态功能区、西北地区重要的生态安全屏障和河流产流区,是气候变化敏感区和生态环境脆弱区,其生态环境对西北地区经济发展起着重要作用。本研究利用祁连山区气温和降水观测数据、MOD10A2积雪产品以及石羊河、黑河和疏勒河流量资料,系统分析了1961—2020年祁连山区的气候变化特征,以及在气候变暖背景下,气候变化对祁连山区水资源的影响。结果表明: 1961—2020年,祁连山区平均气温呈显著上升趋势,升温速率达0.39 ℃·(10 a)-1,西段升温速率最大,中、东段次之,冬季升温趋势最显著,春季最小;祁连山区平均气温在1997年发生突变。祁连山区年降水量总体呈波动增加趋势[10 mm·(10 a)-1],中段增加最明显,2004年以来祁连山区处于多雨时期,气候呈暖湿化趋势;四季降水量均呈增加趋势,夏季降水增加对年降水贡献最大;年降水以年际尺度变化为主,2.8年的年际尺度贡献率高达64.3%。祁连山积雪面积受气温和降雪影响明显,与夏季气温存在负相关,与降雪量存在正相关;2016—2020年,祁连山增温趋缓、降雪增多,积雪面积呈增加趋势。2000年以来,祁连山升温加剧,降水增多,冰雪融水增加,石羊河、黑河和疏勒河出山径流均呈增加趋势。研究结果对祁连山区生态文明建设和应对气候变化具有重要意义。  相似文献   
106.
The analysis of climate change impact is essential to include in conservation planning of crop wild relatives (CWR) to provide the guideline for adequate long-term protection under unpredictable future environmental conditions. These resources play an important role in sustaining the future of food security, but the evidence shows that they are threatened by climate change. The current analyses show that five taxa were predicted to have contraction of more than 30 % of their current ranges: Artocarpus sepicanus (based on RCP 4.5 in both no dispersal and unlimited dispersal scenario and RCP 8.5 in no dispersal scenario by 2050), Ficus oleifolia (RCP 4.5 5 in both no dispersal and unlimited dispersal scenario by 2080), Cocos nucifera and Dioscorea alata (RCP 8.5 in both no dispersal and unlimited dispersal scenario by 2050), and Ficus chartacea (RCP 8.5 in both no dispersal and unlimited dispersal scenario by 2050 and 2080). It shows that the climate change impact is species-specific. Representative Concentration Pathways (RCP) of greenhouse gas (GHG) emission and dispersal scenarios influence the prediction models, and the actual future distribution range of species falls in between those scenarios. Climate refugia, holdout populations, and non-analogue community assemblages were identified based on the Protected Areas (PAs) network. PAs capacity is considered an important element in implementing a conservation strategy for the priority CWR. In areas where PAs are isolated and have less possibility to build corridors to connect each other, such as in Java, unlimited dispersal scenarios are unlikely to be achieved and assisted dispersal is suggested. The holdout populations should be the priority target for the ex situ collection. Therefore, by considering the climate refugia, PAs capacity and holdout populations, the goal of keeping high genetic variations for the long-term conservation of CWR in Indonesia can be achieved.  相似文献   
107.
Temperate wetlands in the Northern Hemisphere have high long-term carbon sequestration rates, and play critical roles in mitigating regional and global atmospheric CO2 increases at the century timescale. We measured soil organic carbon (SOC), total nitrogen (TN), and total phosphorus (TP) from 11 typical freshwater wetlands (Heilongjiang Province) and one saline wetland (Jilin Province) in Northeast China, and estimated carbon sequestration rates using 210Pb and 137Cs dating technology. Effects of climate, net primary productivity, and nutrient availability on carbon sequestration rates (Rcarbon) were also evaluated. Chronological results showed that surface soil within the 0–40 cm depth formed during the past 70–205 years. Soil accretion rates ranged from 2.20 to 5.83 mm yr−1, with an average of 3.84 ± 1.25 mm yr−1 (mean ± SD). Rcarbon ranged from 61.60 to 318.5 gC m−2 yr−1 and was significantly different among wetland types. Average Rcarbon was 202.7 gC m−2 yr−1 in the freshwater wetlands and 61.6 gC m−2 yr−1 in the saline marsh. About 1.04 × 108 tons of carbon was estimated to be captured by temperate wetland soils annually in Heilongjiang Province (in the scope of 45.381–51.085°N, 125.132–132.324°E). Correlation analysis showed little impact of net primary productivity (NPP) and soil nutrient contents on Rcarbon, whereas climate, specifically the combined dynamics of temperature and precipitation, was the predominant factor affecting Rcarbon. The negative relationship observed between Rcarbon and annual mean temperature (T) indicates that warming in Northeast China could reduce Rcarbon. Significant positive relationships were observed between annual precipitation (P), the hydrothermal coefficient (defined as P/AT, where AT was accumulative temperature ≥10 °C), and Rcarbon, indicating that a cold, humid climate would enhance Rcarbon. Current climate change in Northeast China, characterized by warming and drought, may form positive feedbacks with Rcarbon in temperate wetlands and accelerate carbon loss from wetland soils.  相似文献   
108.
We studied topographical and year-to-year variation in the performance (pupal weights, survival) and larval parasitism of Epirrita autumnata larvae feeding on mountain birch in northernmost Finland in 1993–1996. We found differences in both food plant quality and parasitism between sites ranging from 80 m to 320 m above sea level. Variation in food plant quality had particularly marked effects on larval survival. The advanced phenology of the birches in relation to the start of the larval period reduced pupal weights. Parasitism rates were different between years and between sites. The clearest site differences were in the proportions of different parasitoid species: Eulophus larvarum was most abundant at the lowest-altitude sites, and Cotesia jucunda at the highest. Differences in the performance of E. autumnata were related to temperature conditions: at higher temperatures, survival and the egg production index were lower, and larval parasitism was higher than at lower temperatures. The higher parasitism at higher temperatures was probably due to greater parasitoid activity during warmer days. In the comparison of different sources of spatial and annual variation in the performance of E. autumnata, the most important factor appeared to be egg mortality related to minimum winter temperature, followed by parasitism and, finally, the variation in food plant quality. If, as predicted, the climate gradually warms up, the effects of warmer summers on the outbreaks of E. autumnata suggest a decrease in outbreak intensity. Received: 4 January 1999 / Accepted: 22 March 1999  相似文献   
109.
The role of coastal mangrove wetlands in sequestering atmospheric carbon dioxide (CO2) and mitigating climate change has received increasing attention in recent years. While recent studies have shown that methane (CH4) emissions can potentially offset the carbon burial rates in low‐salinity coastal wetlands, there is hitherto a paucity of direct and year‐round measurements of ecosystem‐scale CH4 flux (FCH4) from mangrove ecosystems. In this study, we examined the temporal variations and biophysical drivers of ecosystem‐scale FCH4 in a subtropical estuarine mangrove wetland based on 3 years of eddy covariance measurements. Our results showed that daily mangrove FCH4 reached a peak of over 0.1 g CH4‐C m?2 day?1 during the summertime owing to a combination of high temperature and low salinity, while the wintertime FCH4 was negligible. In this mangrove, the mean annual CH4 emission was 11.7 ± 0.4 g CH4‐C m–2 year?1 while the annual net ecosystem CO2 exchange ranged between ?891 and ?690 g CO2‐C m?2 year?1, indicating a net cooling effect on climate over decadal to centurial timescales. Meanwhile, we showed that mangrove FCH4 could offset the negative radiative forcing caused by CO2 uptake by 52% and 24% over a time horizon of 20 and 100 years, respectively, based on the corresponding sustained‐flux global warming potentials. Moreover, we found that 87% and 69% of the total variance of daily FCH4 could be explained by the random forest machine learning algorithm and traditional linear regression model, respectively, with soil temperature and salinity being the most dominant controls. This study was the first of its kind to characterize ecosystem‐scale FCH4 in a mangrove wetland with long‐term eddy covariance measurements. Our findings implied that future environmental changes such as climate warming and increasing river discharge might increase CH4 emissions and hence reduce the net radiative cooling effect of estuarine mangrove forests.  相似文献   
110.
Changes in temperature and moisture as a result of climate forcing can impact performance of planted trees. Tree performance may also be sensitive to new soil conditions, for example, brought about by seeds germinating in soils different from those colonized by ancestral populations. Such “edaphic constraint” may occur with natural migration or human‐assisted movement. Pinus ponderosa seedlings, sourced from one location (“home” site), were grown across a field environmental gradient in either their original home soil or in soils from two different “away” sites. Seedlings were inoculated with site‐specific soil organisms by germinating seeds in living soil. After 6 months, the inoculated seedlings were transplanted into sterilized soils from the home or away sites. This experimental design allowed us to uncouple the importance of abiotic and biotic soil properties and test (1) how biotic and abiotic soil properties interact with climate to influence plant growth and stress tolerance, and (2) the role of soil biota in facilitating growth in novel environments. Seedlings grew least in hotter and drier away sites with away soil biota. Home soil biota ameliorated negative impacts on growth of hotter and drier away sites. Measurements of photosynthetic rate, stomatal conductance, and chlorophyll florescence (Fv/Fm) suggest that edaphic constraint reduced growth by increasing tree water stress. Results suggest that success of Ponderosa pine plantings into warming environments will be enhanced by pre‐inoculation with native soil biota of the seed source.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号