首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11593篇
  免费   2315篇
  国内免费   1747篇
  15655篇
  2024年   76篇
  2023年   553篇
  2022年   360篇
  2021年   477篇
  2020年   876篇
  2019年   845篇
  2018年   806篇
  2017年   840篇
  2016年   795篇
  2015年   797篇
  2014年   816篇
  2013年   905篇
  2012年   610篇
  2011年   582篇
  2010年   557篇
  2009年   685篇
  2008年   661篇
  2007年   601篇
  2006年   522篇
  2005年   484篇
  2004年   392篇
  2003年   305篇
  2002年   268篇
  2001年   243篇
  2000年   259篇
  1999年   169篇
  1998年   169篇
  1997年   119篇
  1996年   118篇
  1995年   130篇
  1994年   88篇
  1993年   67篇
  1992年   53篇
  1991年   48篇
  1990年   45篇
  1989年   26篇
  1988年   30篇
  1987年   25篇
  1986年   32篇
  1985年   27篇
  1984年   26篇
  1983年   22篇
  1982年   35篇
  1981年   17篇
  1980年   31篇
  1979年   27篇
  1978年   6篇
  1977年   7篇
  1976年   6篇
  1958年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
971.
Recent increases in global temperatures have affected the phenology and survival of many species of plants and animals. We investigated a case study of the effects of potential climate change on a thermally sensitive species, the loggerhead sea turtle, at a breeding location at the northerly extent of the range of regular nesting in the United States. In addition to the physical limits imposed by temperature on this ectothermic species, sea turtle primary sex ratio is determined by the temperature experienced by eggs during the middle third of incubation. We recorded sand temperatures and used historical air temperatures (ATs) at Bald Head Island, NC, to examine past and predict future sex ratios under scenarios of warming. There were no significant temporal trends in primary sex ratio evident in recent years and estimated mean annual sex ratio was 58% female. Similarly, there were no temporal trends in phenology but earlier nesting and longer nesting seasons were correlated with warmer sea surface temperature. We modelled the effects of incremental increases in mean AT of up to 7.5°C, the maximum predicted increase under modelled scenarios, which would lead to 100% female hatchling production and lethally high incubation temperatures, causing reduction in hatchling production. Populations of turtles in more southern parts of the United States are currently highly female biased and are likely to become ultra‐biased with as little as 1°C of warming and experience extreme levels of mortality if warming exceeds 3°C. The lack of a demonstrable increase in AT in North Carolina in recent decades coupled with primary sex ratios that are not highly biased means that the male offspring from North Carolina could play an increasingly important role in the future viability of the loggerhead turtle in the Western Atlantic.  相似文献   
972.
973.
Since 1988, there has been, on average, a 91% increase in dissolved organic carbon (DOC) concentrations of UK lakes and streams in the Acid Waters Monitoring Network (AWMN). Similar DOC increases have been observed in surface waters across much of Europe and North America. Much of the debate about the causes of rising DOC has, as in other studies relating to the carbon cycle, focused on factors related to climate change. Data from our peat‐core experiments support an influence of climate on DOC, notably an increase in production with temperature under aerobic, and to a lesser extent anaerobic, conditions. However, we argue that climatic factors may not be the dominant drivers of DOC change. DOC solubility is suppressed by high soil water acidity and ionic strength, both of which have decreased as a result of declining sulphur deposition since the 1980s, augmented during the 1990s in the United Kingdom by a cyclical decline in sea‐salt deposition. Our observational and experimental data demonstrate a clear, inverse and quantitatively important link between DOC and sulphate concentrations in soil solution. Statistical analysis of 11 AWMN lakes suggests that rising temperature, declining sulphur deposition and changing sea‐salt loading can account for the majority of the observed DOC trend. This combination of evidence points to the changing chemical composition of atmospheric deposition, particularly the substantial reduction in anthropogenic sulphur emissions during the last 20 years, as a key cause of rising DOC. The implications of rising DOC export for the carbon cycle will be very different if linked primarily to decreasing acid deposition, rather than to changes in climate, suggesting that these systems may be recovering rather than destabilising.  相似文献   
974.
Global climate change has led to warmer winters in NW Europe, shortening the distance between suitable overwintering areas and the breeding areas of many bird species. Here we show that winter recovery distances have decreased over the past seven decades, for birds ringed during the breeding season in the Netherlands between 1932 and 2004. Of the 24 species included in the analysis, we found in 12 a significant decrease of the distance to the wintering site. Species from dry, open areas shortened their distance the most, species from wet, open areas the least, while woodland species fall in between the other two habitats. The decline in migration distance is likely due to climate change, as migration distances are negatively correlated with the Dutch temperatures in the winter of recovery. With a shorter migration distance, species should be better able to predict the onset of spring at their breeding sites and this could explain the stronger advancement of arrival date found in several short distance species relative to long-distance migrants.  相似文献   
975.
Unstable snow cover and more frequent freeze–thaw events have been predicted for montane areas in southern Norway, where stable winters are common today. These systems are important contributors to the flux of carbon (C) and nitrogen (N) to air and water. Here we quantify and compare the effects of freeze–thaw on C and N release from soils collected below Calluna, Molinia or Sphagnum. Intact organic soil cores were subjected to four different freeze–thaw regimes for four consecutive 2‐week periods: (1) slow cycling (SC) with one long freezing event during each 2‐week period, (2) fast cycling (FC) with four short freezing events during each 2‐week period, (3) permanent frost (PF) and (4) permanent thaw (PT). The freezing temperature was −5 °C and the thawing temperature was 5 °C. Before start of treatment, at the end of each 2‐week period, and during postincubation periods, carbon dioxide (CO2) emission as well as leachable dissolved organic C (DOC), dissolved organic N (DON), ammonium (NH4), nitrate (NO3) and absorbance at 254 nm were measured. In soils from all three vegetations, PF increased the release of CO2, DOC, DON and NH4 compared with PT. SC caused some scattered effects whereas FC only resulted in some increase in NO3 release below Molinia. Generally, the emission of CO2 and leaching of DOC, DON and NH4 increased in the following order: Sphagnum < Calluna < Molinia. The release of NO3 was greatest below Calluna. Our data suggest that vegetation cover and composition seem at least as important as increased soil frost for future winter fluxes of CO2, DOC, DON and dissolved inorganic N (DIN) from the soil to air and water. The freezing period needs to be sufficiently long to give significant effects.  相似文献   
976.
Climate warming is discussed as a factor that can favour the success of invasive species. In the present study, we analysed potential fitness gains of moderate warming (3 °C above field temperature) on the invasive clam Corbicula fluminea during summer and winter. The experiments were conducted under seminatural conditions in a bypass-system of a large river (Rhine, Germany). We showed that warming in late summer results in a significant decrease in the clams' growth rates (body mass and shell length increase) and an increase in mortality rate. The addition of planktonic food dampens the negative effect of warming on the growth rates. This suggests that the reason for the negative growth effect of temperature increase in late summer is a negative energetic balance caused by an enhanced metabolic rate at limited food levels. Warming during early summer revealed contrasting effects with respect of body mass (no warming effect) and shell length (increased shell growth with warming). This differential control of both parameters further enhances the loss of the relative (size-specific) body mass with warming. In contrast, warming in winter had a consistently positive effect on the clams' growth rate as demonstrated in two independent experiments. Furthermore, the reproduction success (as measured by the average number of larvae per clam) during the main breeding period (April) was strongly enhanced by experimental warming during winter, i.e. by eight times during the relatively cold winter 2005/2006 and by 2.6 times during the relatively warm winter 2007/2008. This strong, positive effect of moderate winter warming on the clams' fitness is probably one reason for the recent invasion success of C. fluminea in the northern hemisphere. However, warm summer events might counteract the positive winter warming effect, which could balance out the fitness gains.  相似文献   
977.
Current predictions of how species will respond to climate change are based on coarse‐grained climate surfaces or idealized scenarios of uniform warming. These predictions may erroneously estimate the risk of extinction because they neglect to consider spatially heterogenous warming at the landscape scale or identify refugia where species can persist despite unfavourable regional climate. To address this issue, we investigated the heterogeneity in warming that has occurred in a 10 km × 10 km area from 1972 to 2007. We developed estimates by combining long‐term daily observations from a limited number of weather stations with a more spatially comprehensive dataset (40 sites) obtained during 2005–2006. We found that the spatial distribution of warming was greater inland, at lower elevations, away from streams, and at sites exposed to the northwest (NW). These differences corresponded with changes in weather patterns, such as an increasing frequency of hot, dry NW winds. As plant species were biased in the topographic and geographic locations they occupied, these differences meant that some species experienced more warming than others, and are at greater risk from climate change. This species bias could not be detected at coarser scales. The uneven seasonal nature of warming (e.g. more warming in winter, minimums increased more than maximums) means that climate change predictions will vary according to which predictors are selected in species distribution models. Models based on a limited set of predictors will produce erroneous predictions when the correct limiting factor is not selected, and this is difficult to avoid when temperature predictors are correlated because they are produced using elevation‐sensitive interpolations. The results reinforce the importance of downscaling coarse‐grained (∼50 km) temperature surfaces, and suggest that the accuracy of this process could be improved by considering regional weather patterns (wind speed, direction, humidity) and topographic exposure to key wind directions.  相似文献   
978.
Abstract.  1. The spatio-temporal approach was used to evaluate the environmental features influencing carabid beetle assemblages along a chronosequence of an Italian Alpine glacier foreland. The influence of environmental variables on species richness, morphology (wing and body length), and distribution along the chronosequence was tested.
2. Species richness was found to be a poor indicator of habitat due to weak influences by environmental variables. It seems that the neighbouring habitats of a glacier foreland are not able to determine significant changes in carabid species richness.
3. Instead it appears that history (age since deglaciation) and habitat architecture of a glacier foreland are strongly correlated to species adaptive morphological traits, such as wing morphology and body length. Assemblages characterised by species with reduced wing size are linked to the older stages of the chronosequence, where habitat is more structured. Assemblages characterised by the largest species are linked to the younger sites near the glacier. These morphological differentiations are explained in detail.
4. Habitat age can therefore be considered the main force determining assemblage composition. On the basis of the relationship between morphological traits and environmental variables, it seems likely that age since deglaciation is the main variable influencing habitat structure (primary effect) on the Forni foreland. The strong relationship between carabid assemblages and habitat type indicates that site age has but a secondary effect on carabid assemblages. This may be utilised to interpret potential changes in assemblages linked to future glacier retreat.  相似文献   
979.
980.
植物光合生理生态特性是退化植物群落恢复、重建植物种选择的重要依据。为研究不同红树植物光合生理生态特性,该研究于2021年旱季的4—5月、雨季的7—9月利用LI-6400光合仪,测定红树植物秋茄和海莲的光合生理参数和主要生态因子,并采用通径分析方法分析主要生态因子对净光合速率的影响。结果表明:(1)秋茄旱季净光合速率日均值(8.43μmol-2·s-1)略低于雨季(8.67μmol-2·s-1),差异不显著;海莲旱季净光合速率日均值(7.03μmol-2·s-1)显著低于雨季(9.41μmol-2·s-1);旱季秋茄净光合速率日均值显著高于海莲,而雨季秋茄净光合速率日均值显著低于海莲。(2)旱季、雨季秋茄蒸腾速率、气孔导度、胞间CO2浓度等光合生理因子日均值变化幅度小于海莲,水分利用效率也低于海莲。(3)旱季、雨季两种红树植物均存在“光合午休”现象。旱季,秋茄属于非气孔限制,而海莲属于气孔限制...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号