首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1883篇
  免费   76篇
  国内免费   50篇
  2023年   27篇
  2022年   49篇
  2021年   42篇
  2020年   30篇
  2019年   44篇
  2018年   40篇
  2017年   37篇
  2016年   36篇
  2015年   48篇
  2014年   104篇
  2013年   138篇
  2012年   80篇
  2011年   109篇
  2010年   95篇
  2009年   99篇
  2008年   80篇
  2007年   108篇
  2006年   80篇
  2005年   73篇
  2004年   64篇
  2003年   62篇
  2002年   75篇
  2001年   43篇
  2000年   30篇
  1999年   46篇
  1998年   30篇
  1997年   34篇
  1996年   37篇
  1995年   20篇
  1994年   22篇
  1993年   20篇
  1992年   17篇
  1991年   22篇
  1990年   9篇
  1989年   9篇
  1988年   12篇
  1987年   19篇
  1986年   9篇
  1985年   9篇
  1984年   25篇
  1983年   12篇
  1982年   18篇
  1981年   9篇
  1980年   7篇
  1979年   5篇
  1977年   3篇
  1975年   5篇
  1974年   3篇
  1973年   5篇
  1972年   3篇
排序方式: 共有2009条查询结果,搜索用时 31 毫秒
21.
The psbO gene of cyanobacteria, green algae and higher plants encodes the precursor of the 33 kDa manganese-stabilizing protein (MSP), a water-soluble subunit of photosystem II (PSII). Using a pET-T7 cloning/expression system, we have expressed in Escherichia coli a full-length cDNA clone of psbO from Arabidopsis thaliana. Upon induction, high levels of the precursor protein accumulated in cells grown with vigorous aeration. In cells grown under weak aeration, the mature protein accumulated upon induction. In cells grown with moderate aeration, the ratio of precursor to mature MSP decreased as the optical density at induction increased. Both forms of the protein accumulated as inclusion bodies from which the mature protein could be released under mildly denaturing conditions that did not release the precursor. Renatured Arabidopsis MSP was 87% as effective as isolated spinach MSP in restoring O2 evolution activity to MSP-depleted PSII membranes from spinach; however, the heterologous protein binds to spinach PSIIs with about half the affinity of the native protein. We also report a correction to the previously published DNA sequence of Arabidopsis psbO (Ko et al., Plant Mol Biol 14 (1990) 217–227).  相似文献   
22.
Chloroplasts consist of six morphologically distinct compartments. Each compartment has a specific set of polypeptides that perform distinct biochemical functions. We report here the identification of a membrane-associated protein with a novel localization. This protein was synthesized as a 37 kDa precursor and was processed to a mature protein of 30 kDa after being imported into isolated pea chloroplasts. Fractionation of chloroplasts showed that the 30 kDa mature protein was associated with both of the envelope membranes as well as with thylakoid membranes. Immunocyto-chemical localization of the 30 kDa protein revealed that the protein occurred in clusters in the vicinity of both the envelope and the thylakoid. Possible functions of this 30 kDa protein, inferred from its novel localization pattern, are discussed.Abbreviations CAB light-harvesting chlorophyll a/b-binding protein of photosystem II - prCAB precursor protein to CAB - SS small subunit of ribulose-1,5-bisphosphate carboxylase - prSS precursor protein to SS - RCF relative centrifugation force  相似文献   
23.
Antisera towards neurotensin (NT) and the structurally related peptide, LANT6, were used to characterize immunoreactive peptides and proteins in extracts of chicken tissues. A 17 kDa protein was identified by Western blotting as a potential precursor to NT and LANT6. However, the posttranslational processing of this common precursor appeared to be tissue specific, giving rise to disproportionate amounts of NT and LANT6, along with varying expression of a large molecular LANT6 (Mr, 15 kDa). The intestinal cells containing immunoreactive NT, LANT6, and large molecular LANT6 behaved similarly during fractionation by size and density. These activities also banded together in particles resembling vesicles during centrifugation of isotonic homogenates of tissue. These results suggest that chicken NT and LANT6 are biosynthesized as parts of the same precursor, the processing of which can give rise to a variety of products stored within secretory vesicles.  相似文献   
24.
Glial cells are the most abundant cells in the central nervous system and play crucial roles in neural development, homeostasis, immunity, and conductivity. Over the past few decades, glial cell activity in mammals has been linked to circadian rhythms, the 24-h chronobiological clocks that regulate many physiological processes. Indeed, glial cells rhythmically express clock genes that cell-autonomously regulate glial function. In addition, recent findings in rodents have revealed that disruption of the glial molecular clock could impact the entire organism. In this review, we discuss the impact of circadian rhythms on the function of the three major glial cell types – astrocytes, microglia, and oligodendrocytes – across different locations within the central nervous system. We also review recent evidence uncovering the impact of glial cells on the body's circadian rhythm. Together, this sheds new light on the involvement of glial clock machinery in various diseases.  相似文献   
25.
26.
Twenty five environmental isolates enriched for their ability to grow onN-acetylphenylalanine as sole carbon source were investigated for their hydrolytic action on (+)-lactam (2-azabicyclo[2.2.1]hept-5-en-3-one). Strain CMC 3060, a mucoidal Gram-negative rod identified as a strain ofPseudomonas fluorescens, produced high levels of (+)lactamase, and was subsequently found to produce two distinct intracellular enantiomer-selective, -lactamases, one for each isomer. The (+)lactamase was produced constitutively whereas the (-lactamase was produced only in the presence of the substrate. The (+)lactamase was stable when stored as a frozen cell paste but unstable as a protein solution, losing activity during purification and storage. This enzyme was highly selective for the (+)lactam and showed no activity against a wide range of similar compounds. By use of rapid purification techniques and the inclusion of protease inhibitors and protein stabilisers, the (+)lactamase was purified to homogeneity by FPLC and found to be a monomer of molecular weight 61000 Da.  相似文献   
27.
Abstract: The amyloid β peptide (Aβ) of Alzheimer disease is derived from the proteolytic processing of the amyloid precursor proteins (APPs), which are considered type I transmembrane proteins. Here we report that the soluble fraction of isolated adrenal medullary chromaffin granules (CG), a model neuronal secretory vesicle system, contains an antigen that immunochemically and on sodium dodecyl sulfate-polyacrylamide gel electrophoresis was indistinguishable from full-length APP. A truncated APP fragment with intact Aβ sequence was also detected in the soluble fraction of CG. In vitro experiments showed that full-length APP was solubilized from CG membranes at 37°C as a function of pH, with a peak of activity between pH 8.5 and pH 9.0. Solubilization of full-length APP was inhibited by several protease inhibitors, including aprotinin, cystatin, and iodoacetamide, by the divalent cations Ca2+ and Zn2+, and by preheating of the membranes. These results are consistent with and suggest the involvement of an enzymatic mechanism in the solubilization of potentially amyloidogenic full-length APP. Production of Aβ from a transmembrane APP predicts a proteolytic cleavage within the lipid bilayer, a site relatively inaccessible to proteases. Thus, the detected soluble, potentially amyloidogenic, full-length APP may be a substrate for the proteases producing Aβ. The detection of soluble APP with intact Aβ sequence in secretory vesicles is consistent with the extracellular topology of amyloid depositions.  相似文献   
28.
The small subunit (SSU) of Rubisco is synthesized in the cytosol in a precursor form. Upon import into the chloroplast, it is proteolytically processed at a Cys-Met bond to yield the mature form of the protein. To assess the importance of the Met residue for recognition and processing by the stromal peptidase, we substituted this residue with either Thr, Arg or Asp. The mutant precursor proteins were imported into isolated chloroplasts, and the products of the import reactions were analyzed. Mutants containing Thr or Arg residues at the putative processing site were processed to a single peptide, comigrating with the wild-type protein. N-terminal radio-sequencing revealed that these mutants were processed at the Cys-Thr and the Cys-Arg bond, respectively. After import of the Asp-containing mutant, four processed forms of the protein were observed. Analysis of the most abundant one, co-migrating with the wild-type protein, demonstrated that this species was also a product of correct processing, at the Cys-Asp bond. All the correctly processed peptides were found to be associated with the holoenzyme of Rubisco, and remained stable within the chloroplast, like the wild-type protein. The results of this study, together with previous ones, suggest that proper recognition and processing of the SSU precursor are more affected by residues N-terminal to the processing site than by the residue on the C-terminal side of this site.  相似文献   
29.
30.
Summary Five mmol ofl-2-oxothiazolidine-4-carboxylate (OTC)/kg of body weight was administered into the stomach of rats, and cysteine levels in tissues and sulfate and taurine excreted in the urine were determined. The cysteine (plus cystine expressed as cysteine) concentration in the liver increased to 170–200% of the original level at 30 min and that in the blood to 160% at 60 min after the OTC administration. These high levels were maintained until 8 h after the administration and decreased gradually thereafter. Excretion of sulfate and taurine increased after the OTC administration and the increase corresponded to 26% and 15%, respectively, of the OTC administered. These findings suggest that at least about 40% of the OTC administered into the stomach was taken up and converted to cysteine, which was metabolized to sulfate and taurine.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号