首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   605篇
  免费   103篇
  国内免费   9篇
  717篇
  2024年   2篇
  2023年   4篇
  2022年   9篇
  2021年   9篇
  2020年   29篇
  2019年   25篇
  2018年   19篇
  2017年   29篇
  2016年   27篇
  2015年   39篇
  2014年   45篇
  2013年   42篇
  2012年   44篇
  2011年   38篇
  2010年   34篇
  2009年   43篇
  2008年   44篇
  2007年   34篇
  2006年   38篇
  2005年   30篇
  2004年   14篇
  2003年   21篇
  2002年   19篇
  2001年   20篇
  2000年   18篇
  1999年   11篇
  1998年   4篇
  1997年   4篇
  1996年   1篇
  1995年   6篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1989年   1篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1980年   1篇
排序方式: 共有717条查询结果,搜索用时 15 毫秒
31.
The hypothesis that selection on the opsin gene is efficient in tuning vision to the ambient light environment of an organism was assessed in 49 populations of 12 Mysis crustacean species, inhabiting arctic marine waters, coastal littoral habitats, freshwater lakes ('glacial relicts') and the deep Caspian Sea. Extensive sequence variation was found within and among taxa, but its patterns did not match expectations based on light environments, spectral sensitivity of the visual pigment measured by microspectrophotometry or the history of species and populations. The main split in the opsin gene tree was between lineages I and II, differing in six amino acids. Lineage I was present in marine and Caspian Sea species and in the North American freshwater Mysis diluviana, whereas lineage II was found in the European and circumarctic fresh- and brackish-water Mysis relicta, Mysis salemaai and Mysis segerstralei. Both lineages were present in some populations of M. salemaai and M. segerstralei. Absorbance spectra of the visual pigment in nine populations of the latter three species showed a dichotomy between lake (λ(max) =554-562 nm) and brackish-water (Baltic Sea) populations (λ(max) = 521-535 nm). Judged by the shape of spectra, this difference was not because of different chromophores (A2 vs. A1), but neither did it coincide with the split in the opsin tree (lineages I/II), species identity or current light environments. In all, adaptive evolution of the opsin gene in Mysis could not be demonstrated, but its sequence variation did not conform to a neutral expectation either, suggesting evolutionary constraints and/or unidentified mechanisms of spectral tuning.  相似文献   
32.
Pollen and plant macrofossil data from northern Eurasia were used to reconstruct the vegetation of the last glacial maximum (LGM: 18,000 ± 2000 14C yr bp ) using an objective quantitative method for interpreting pollen data in terms of the biomes they represent ( Prentice et al., 1996 ). The results confirm previous qualitative vegetation reconstructions at the LGM but provide a more comprehensive analysis of the data. Tundra dominated a large area of northern Eurasia (north of 57°N) to the west, south and east of the Scandinavian ice sheet at the LGM. Steppe‐like vegetation was reconstructed in the latitudinal band from western Ukraine, where temperate deciduous forests grow today, to western Siberia, where taiga and cold deciduous forests grow today. The reconstruction shows that steppe graded into tundra in Siberia, which is not the case today. Taiga grew on the northern coast of the Sea of Azov, about 1500 km south of its present limit in European Russia. In contrast, taiga was reconstructed only slightly south of its southern limit today in south‐western Siberia. Broadleaved trees were confined to small refuges, e.g. on the eastern coast of the Black Sea, where cool mixed forest was reconstructed from the LGM data. Cool conifer forests in western Georgia were reconstructed as growing more than 1000 m lower than they grow today. The few scattered sites with LGM data from the Tien‐Shan Mountains and from northern Mongolia yielded biome reconstructions of steppe and taiga, which are the biomes growing there today.  相似文献   
33.
1. At the end of the Last Glacial Maximum brown bears Ursus arctos recolonized the glacial landscape of Central and Northern Europe faster than all other carnivorous mammal species of the Holocene fauna. Ursus arctos was recorded in Northern Europe from the beginning of the Late-Glacial. The recolonization of northern Central Europe may have taken place directly after the maximum glaciation. The distribution of the brown bear was restricted to glacial refugia only during the Last Glacial Maximum, for probably no more than 10 000 years. 2. Genetic analyses have suggested three glacial refugia for the brown bear: the Iberian Peninsula, the Italian Peninsula and the Balkans. Subfossil records of Ursus arctos from north-western Moldova as well as reconstructed environmental conditions during the Last Glacial Maximum in this area suggest to us a fourth glacial refuge for the brown bear. Because of its connection to the Carpathians, we designate this as the ‘Carpathian refuge’. 3. Due to the low genetic distance between brown bears of northern Norway, Finland, Estonia, north-eastern Russia and the northern Carpathians (the so-called eastern lineage), the Carpathians were considered the geographical origin of the recolonization of these regions. During the recolonization of northern Europe the brown bear probably reached these areas rapidly from the putative Carpathian refuge.  相似文献   
34.
应用石蜡切片和扫描电镜方法对一号冰川退缩地生长的15种丛藓科植物茎的结构及表面微形态特征进行观察,结果表明:该地区的15种丛藓科植物的茎分为具中轴和无中轴两类,其细胞壁均有不同程度的加厚。而具中轴的丛藓科植物的茎又分为表皮、皮部、中轴三部分,茎表皮细胞短,1层,细胞壁大多向外突出,表面粗糙,表面纹饰多为颗粒状;皮部所占面积最大,大部分有内、外皮部的分化,大多数种的细胞壁由外向内逐渐变薄,细胞由小到大整齐排列;中轴所占的面积也不同,其细胞壁多具角隅加厚;而没有中轴分化的种类,其各自细胞壁加厚的程度基本一致。  相似文献   
35.
Abstract

High-throughput sequencing approach of the 16S rRNA gene was employed to evaluate the bacterial diversity inhabit in melted water, snow, soil, and rocks samples at the lower altitudes of the Laohugou glacial environment. Bioinformatics tools were used to process millions of Illumina reads for alpha and beta diversities of bacterial communities. The diversity indices such as Chao, Shannon, and Simpson were different in the collected samples and solid samples (soil and rocks) showed higher taxon richness and evenness. Taxonomic diversity was unexpectedly higher and the major portion of sequences was assigned to Proteobacteria, Actinobacteria, and Acidobacteria. Higher variation in community structure was reported at the class level and Alphaproteobacteria was dominant. The solid niches were occupied by a higher number of phyla compared with liquid. The physicochemical variables acted as spatial gradients and associated with the bacterial structural communities of the glacial ecosystem. Findings showed that both Proteobacteria and Actinobacteria in solid samples influenced the bacterial community structure in downstream liquid samples. Interestingly, the metagenomic biomarkers were higher in liquid samples. This study provides precious datasets to understand the bacterial community in a better way under the influence of spatial, physical and environmental factors.  相似文献   
36.
Understanding the factors that shape species’ distributions is a key topic in biogeography. As climates change, species can either cope with these changes through evolution, plasticity or by shifting their ranges to track the optimal climatic conditions. Ecological niche modeling (ENM) is a widespread technique in biogeography that estimates the niche of the organism by using occurrences and environmental data to estimate species’ potential distributions. ENMs are often criticized for failing to take species’ dispersal abilities into consideration. Here, we attempt to fill this gap by combining ENMs with dispersal and corridor modeling to study the range dynamics of North American spadefoot toads (Scaphiopodidae) over the Holocene. We first estimated the current and past distributions of spadefoot toads and then estimated their past distributions from the Last Glacial Maximum (LGM) to the present day. Then, we estimated how each taxon recolonized North American by using dispersal and corridor modeling. By combining these two modeling approaches we were able to 1) estimate the LGM refugia used by the North American spadefoot toads, 2) further refine these projections by estimating which of the putative LGM refugia contributed to the recolonization of North America via dispersal, and 3) estimate the relative influence of each LGM refugium to the current species’ distributions. The models were tested using previously published phylogeographic data, revealing a high degree of congruence between our models and the genetic data. These results suggest that combining ENMs and dispersal modeling over time is a promising approach to investigate both historical and future species’ range dynamics.  相似文献   
37.
Nothotsuga longibracteata, a relic and endangered conifer species endemic to subtropical China, was studied for examining the spatial-temporal population genetic variation and structure to understand the historical biogeographical processes underlying the present geographical distribution. Ten populations were sampled over the entire natural range of the species for spatial analysis, while three key populations with large population sizes and varied age structure were selected for temporal analyses using both nuclear microsatellites (nSSR) and chloroplast microsatellites (cpSSR). A recent bottleneck was detected in the natural populations of N. longibracteata. The spatial genetic analysis showed significant population genetic differentiation across its total geographical range. Notwithstanding, the temporal genetic analysis revealed that the level of genetic diversity between different age class subpopulations remained constant over time. Eleven refugia of the Last Glacial Maximum were identified, which deserve particular attention for conservation management.  相似文献   
38.
Aoki K  Kato M  Murakami N 《Molecular ecology》2008,17(14):3276-3289
Climatic changes during glacial periods have had a major influence on the recent evolutionary history of living organisms, even in the warm temperate zone. We investigated phylogeographical patterns of a weevil Curculio hilgendorfi (Curculionidae), a host-specific seed predator of Castanopsis (Fagaceae) growing in the broadleaved evergreen forests in Japan. We examined 2709 bp of mitochondrial DNA for 204 individuals collected from 62 populations of the weevil. Four major haplogroups were detected, in southwestern and northeastern parts of the main islands and in central and southern parts of the Ryukyu Islands. The demographic population expansion was detected for the two groups in the main islands but not for the Ryukyu groups. The beginning time of the expansion was dated to 39 000–59 000 years ago, which is consistent with the end of the last glacial period. Our data also demonstrated that the southwestern population of the main islands has experienced a more severe bottleneck and more rapid population growth after glacial ages than the northeastern population. At least three refugial areas in the main islands were likely to have existed during the last glacial periods, one of which had not previously been recognized by analyses of intraspecific chloroplast DNA variation of several plant species growing in the broadleaved evergreen forests. Our results represent the first phylogeographical and population demographic analysis of an insect species associated with the broadleaved evergreen forests in Japan, and reveal more detailed postglacial history of the forests.  相似文献   
39.
基于叶绿体微卫星研究鄂报春谱系遗传结构   总被引:2,自引:0,他引:2  
鄂报春Primula obconica作为一种广泛栽培的园艺植物,其野生居群的遗传多样性及遗传结构的研究还少见报道。本文通过叶绿体微卫星分析了17个鄂报春野生居群(共278个个体),共发现4个多态性位点(16个等位基因),得到14个单倍型。结果表明鄂报春具有很高的总基因多样性(HT=0.971)和极低的居群内基因多样性(HS=0.028);分子方差分析(AMOVA)显示98%的变异存在于居群间。这些结果说明早期的生境片断化及有限的种子传播能力是造成当前遗传结构的重要原因。Nst值显著大于Gst值,表明关系相近的单倍型会出现在相同的地区内,同时最小生成树(MST)的分析结果证实了这样的结论。我们在最小生成树的两个组中推断出一些古老单倍型,并推测在冰期时湖北和我国的西南地区可能是该物种的避难所。  相似文献   
40.
How Quaternary climatic oscillations affected range distributions and intraspecific divergence of alpine plants on the Qinghai‐Tibetan Plateau (QTP) remains largely unknown. Here, we report a survey of chloroplast DNA (cpDNA) and nuclear ribosomal internal transcribed spacer (ITS) DNA variation aimed at exploring the phylogeographical history of the QTP alpine endemic Aconitum gymnandrum. We sequenced three cpDNA fragments (rpl20–rps12 intergenic spacer, the trnV intron and psbA‐trnH spacer) and also the nuclear (ITS) region in 245 individuals from 23 populations sampled throughout the species’ range. Two distinct lineages, with eastern and western geographical distributions respectively, were identified from a phylogenetic analysis of ITS sequence variation. Based on a fast substitution rate, these were estimated to have diverged from each other in the early Pleistocene approximately 1.45 Ma. The analysis of cpDNA variation identified nine chlorotypes that clustered into two major clades that were broadly congruent in geographical distribution with the two ITS lineages. The east–west split of cpDNA divergence was supported by an amova which partitioned approximately half of the total variance between these two groups of populations. Analysis of the spatial distribution of chlorotypes showed that each clade was subdivided into two groups of populations such that a total of four population groups existed in the species. It is suggested that these different groups derive from four independent glacial refugia that existed during the Last Glacial Maximum (LGM), and that three of these refugia were located at high altitude on the QTP platform itself at that time. Coalescent simulation of chlorotype genealogies supported both an early Pleistocene origin of the two main cpDNA clades and also the ‘four‐refugia’ hypothesis during the LGM. Two previous phylogeographical studies of QTP alpine plants indicated that such plants retreated to refugia at the eastern/south‐eastern plateau edge during the LGM and/or previous glacial maxima. However, the results for A. gymnandrum suggest that at least some of these cold‐tolerant species may have also survived centrally on the QTP platform throughout the Quaternary.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号