首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   116篇
  免费   9篇
  国内免费   12篇
  2023年   5篇
  2022年   1篇
  2021年   4篇
  2020年   7篇
  2019年   11篇
  2018年   3篇
  2017年   3篇
  2016年   11篇
  2015年   6篇
  2014年   2篇
  2013年   14篇
  2012年   4篇
  2011年   6篇
  2010年   12篇
  2009年   7篇
  2008年   8篇
  2007年   2篇
  2006年   4篇
  2005年   9篇
  2004年   5篇
  2003年   6篇
  2001年   1篇
  2000年   3篇
  1996年   1篇
  1993年   1篇
  1992年   1篇
排序方式: 共有137条查询结果,搜索用时 375 毫秒
51.
观察人参皂甙Rg1与1,6-二磷酸果糖配伍的抗疲劳效果,寻找最佳配伍剂量。根据雄性清洁级昆明种小鼠按体重随机分为安静对照组、运动对照组、人参皂甙Rg1对照组及4个配伍组。通过析因实验设计分析人参皂甙Rg1与1,6-二磷酸果糖提高运动耐力的效果及两者的交互作用。结果不同剂量人参皂甙Rg1对小鼠力竭游泳时间影响有显著差异(P<0.05)。各配伍组力竭游泳时间均有显著延长,C组延长最显著;与人参皂甙Rg1对照组相比,各配伍组力竭游泳时间均显著降低(P<0.01)。MDA含量A组显著低于运动对照组和D组,与安静对照组相比,各组均升高。SOD/MDA比值A、C组显著高于运动对照组,C组显著高于人参皂甙Rg1对照组,与安静对照组相比,各组均有下降趋势,D组下降最显著(P<0.01)。乳酸脱氢酶C、D组显著低于运动对照组和人参皂甙Rg1对照组(P<0.05)。与运动对照组及人参皂甙Rg1对照组相比,配伍在一定程度上减少心肌、骨骼肌细胞线粒体和其他细胞超微结构损伤。结论:与FDP配伍未能延长小鼠力竭游泳时间,配伍可减轻耐力运动对小鼠心肌和骨骼肌的细胞损害,一定程度上保护线粒体的呼吸功能,缓解细胞缺氧损伤。  相似文献   
52.
人参皂苷Rg2抗MTD大鼠海马神经元凋亡的研究   总被引:1,自引:0,他引:1  
目的:观察多发梗塞性痴呆模型大鼠CPU凋亡相关蛋白的改变,研究其在学习记忆障碍中的作用机制,并探讨人参皂苷Rg2的干预作用。方法:将复合血栓诱导剂经大鼠左颈总-颈内动脉注射入其左侧大脑半球,诱导半球内血栓形成,造成多发梗塞,从而建立大鼠的学习和记忆功能障碍模型。分别给予不同剂量的人参皂苷Rg2治疗7天,并以尼莫地平进行对照。用Y型电迷宫检测正常对照及痴呆模型大鼠学习和记忆能力的改变;对大鼠的脑组织切片作尼氏染色行病理学检查;以免疫组化方法检测Glu、CalpainⅡ、Caspase-3、Bax的表达。结果:颈内动脉注射复合血栓诱导剂可造成大鼠在Y型电迷宫中的学习和记忆成绩明显降低,与假手术对照组比较有显著差异(P<0.05)。尼氏染色可在大鼠脑片的CPU区发现胶质瘢痕化的微梗塞灶。在免疫组化结果中,Glu、CalpainⅡ、Caspase-3、Bax表达均增高。结论:单侧大脑注射复合血栓诱导剂可造成大鼠的学习记忆能力降低,可部分模拟MID的行为和病理学改变。人参皂苷Rg2能明显改善MID模型大鼠的学习记忆成绩,其作用机制可能与它的钙通道阻滞作用使凋亡蛋白CalpainⅡ、Caspase-3、Bax表达降低有关...  相似文献   
53.
西洋参冠瘿组织培养及其人参皂苷Re和人参皂苷Rg1的产生   总被引:12,自引:0,他引:12  
考察了培养基组成、培养时间、接种量、pH值、肌醇浓度等对冠瘿组织生长及其人参皂苷含量的影响 ;用HPLC检测了冠瘿组织中人参皂苷Re和人参皂苷Rg1 的含量。高压纸层析电泳证实 ,根癌农杆菌Ti质粒上的T DNA片段已整合进入植物细胞核基因组中。在考察的 6种培养基中 ,White培养基最适合人参皂苷Rg1 的累积(0 0 95 % ) ,MS培养基最适合人参皂苷Re的累积 (0 194 % )。以MS为基本培养基培养 36d、32d时人参皂苷Re和人参皂苷Rg1 累积含量最高 (分别为 0 14 7%和 0 0 6 1% ) ;接种量为 4g、2g (FW flask) ,有利于人参皂苷Re和人参皂苷Rg1的累积 ;培养基pH 5 8时人参皂苷Re含量最高 (0 184 % ) ,培养基pH 5 6时人参皂苷Rg1 累积量最高 (0 0 5 4 % ) ;肌醇浓度为 0 0 5g L时 ,能促进人参皂苷Re合成 (0 182 % ) ,浓度为 0 30g L时 ,有利于人参皂苷Rg1 累积 (0 0 5 5 % )。  相似文献   
54.
The effects of external calcium concentrations on biosynthesis of ginsenoside Rb1 and several calcium signal sensors were quantitatively investigated in suspension cultures of Panax notoginseng cells. It was observed that the synthesis of intracellular ginsenoside Rb1 in 3-day incubation was dependent on the medium Ca2+ concentration (0-13 mM). At an optimal Ca2+ concentration of 8 mM, a maximal ginsenoside Rb1 content of 1.88 +/- 0.03 mg g(-1) dry weight was reached, which was about 60% and 25% higher than that at Ca2+ concentrations of 0 and 3 mM, respectively. Ca2+ feeding experiments confirmed the Ca2+ concentration-dependent Rb1 biosynthesis. In order to understand the mechanism of the signal transduction from external Ca2+ to ginsenoside biosynthesis, the intracellular content of calcium and calmodulin (CaM), activities of calcium/calmodulin-dependent NAD kinase (CCDNK) and calcium-dependent protein kinase (CDPK), and activity of a new biosynthetic enzyme of ginsenoside Rb1, i.e., UDPG:ginsenoside Rd glucosyltransferase (UGRdGT), in the cultured cells were all analyzed. The intracellular calcium content and CCDNK activity were increased with an increase of external Ca2+ concentration within 0-13 mM. In contrast, the CaM content and activities of CDPK and UGRdGT reached their highest levels at 8 mM of initial Ca2+ concentration, which was also optimal to the ginsenoside Rb1 synthesis. A similar Ca2+ concentration-dependency of the intracellular contents of calcium and CaM and activities of CCDNK, CDPK, and UGRdGT was confirmed in Ca2+ feeding experiments. Finally, a possible model on the effect of external calcium on ginsenoside Rb1 biosynthesis via the signal transduction pathway of CaM, CDPK, and UGRdGT is proposed. Regulation of external Ca2+ concentration is considered a useful strategy for manipulating ginsenoside Rb1 biosynthesis by P. notoginseng cells.  相似文献   
55.
BACKGROUND: Ginseng has been widely used around the world for many years. Knowledge is limited, however, on its effects on embryonic development. METHODS: Whole embryo culture was used to explore the developmental toxicity of ginsenoside Rb1 (GRb1) on mouse embryos. All embryos were exposed to different concentrations of GRb1, and scored for their growth and differentiation at the end of the 48-hr culture period. RESULTS: Total morphological score decreased significantly at the concentration of GRb1 of 30 microg/ml and was further reduced at 50 microg/ml. Yolk sac was affected at the lower concentration of 15 microg/ml. Developments of midbrain, forebrain, and optic system were relatively sensitive to GRb1 and were affected at the concentration of 30 microg/ml. Allantois, flexion, branchial arch, and limb buds were affected at 50 microg/ml. At this concentration, the embryonic crown-rump length, head length, and somite number were also reduced significantly compared to the control group. CONCLUSIONS: These results suggest that GRb1 has teratogenic effect during the mouse organogenetic period. We suggest that before more data in humans is available, ginseng should be used with caution by pregnant women in the first trimester.  相似文献   
56.
Ginsenoside 20(R/S)‐Rg3, as a natural peroxisome proliferator‐activated receptor gamma (PPARγ) ligand, has been reported to exhibit differential biological effects. It is of great interest to understand the stereochemical selectivity of 20(R/S)‐Rg3 and explore whether differential PPARγ activation by Rg3 stereoisomers, if it exists, could lead to differential physiological outcome and therapeutic effects in diabetic atherosclerosis. Here, we investigated the binding modes of 20(R/S)‐Rg3 stereoisomers in the PPARγ ligand‐binding domain (PPARγ‐LBD) using molecular modelling and their effects on smooth muscle cell proliferation and migration induced by advanced glycation end products (AGEs). The results revealed that 20(S)‐Rg3 exhibited stronger antiproliferative and antimigratory effects due to stronger PPARγ activation. To validate the in vitro results, we used a mice model with diabetic atherosclerosis and obtained that 20(S)‐Rg3 markedly reduced the plaque size secondary to reducing the proliferation and migration of VSMCs, while the plaques were more stable due to improvements in other plaque compositions. The results shed light on the structural difference between Rg3 stereoisomers that can lead to significant differential physiological outcome, and the (S)‐isomer seems to be the more potent isomer to be developed as a promising drug for diabetic atherosclerosis.  相似文献   
57.
中药党参类对动物耐疲劳及抗缺氧作用的影响   总被引:1,自引:0,他引:1  
作者对14个不同种类、不同产地的党参样品水煎液的抗疲劳及耐缺氧作用进行了试验研究,并与党参粗多糖、人参水煎液、人参皂甙进行了比较。党参类具有耐疲劳作用,可增加动物负重游泳时间,党参水煎液与人参皂甙无明显差异,有的甚至优于人参皂甙。党参水煎液腹腔注射可使缺氧小鼠存活时间显著延长,与人参相比无明显差异。  相似文献   
58.
Modulation of autophagy has been increasingly regarded as a promising cancer therapeutic approach. In this study, we screened several ginsenosides extracted from Panax ginseng and identified ginsenoside Ro (Ro) as a novel autophagy inhibitor. Ro blocked the autophagosome-lysosome fusion process by raising lysosomal pH and attenuating lysosomal cathepsin activity, resulting in the accumulation of the autophagosome marker MAP1LC3B/LC3B and SQSTM1/p62 (sequestosome 1) in various esophageal cancer cell lines. More detailed studies demonstrated that Ro activated ESR2 (estrogen receptor 2), which led to the activation of NCF1/p47PHOX (neutrophil cytosolic factor 1), a subunit of NADPH oxidase, and subsequent reactive oxygen species (ROS) production. Treatment with siRNAs or inhibitors of the ESR2-NCF1-ROS axis, such as N-acetyl-L-cysteine (NAC), diphenyleneiodonium chloride (DPI), apocynin (ACN), Tiron, and Fulvestrant apparently decreased Ro-induced LC3B-II, GFP-LC3B puncta, and SQSTM1, indicating that ROS instigates autophagic flux inhibition triggered by Ro. More importantly, suppression of autophagy by Ro sensitized 5-fluorouracil (5-Fu)-induced cell death in chemoresistant esophageal cancer cells. 5-Fu induced prosurvival autophagy, and by inhibiting such autophagy, siRNAs against BECN1/beclin 1, ATG5, ATG7, and LC3B enhanced 5-Fu-induced autophagy-associated and apoptosis-independent cell death. We observed that Ro potentiates 5-Fu cytotoxicity via delaying CHEK1 (checkpoint kinase 1) degradation and downregulating DNA replication process, resulting in the delayed DNA repair and the accumulation of DNA damage. In summary, these data suggest that Ro is a novel autophagy inhibitor and could function as a potent anticancer agent in combination therapy to overcome chemoresistance.  相似文献   
59.
60.
In China, the ginseng root began to be used in medicine over 2000 years ago. Ginsenosides are the most important component isolated from ginseng. The aim of this study was to determine the effects of ginsenoside Rg1 on the proliferation and molecular mechanism in cultured human arterial vascular smooth muscle cell (HASMC) induced by tumor necrosis factor-alpha (TNF-alpha). It was shown that ginsenoside Rg1 significantly inhibited TNF-alpha-induced HASMC proliferation in a dose-dependent manner. Treatment with ginsenoside Rg1, which blocked the cell cycle in the G1-phase, induced a downregulation of cyclin D1 and an upregulation in the expression of p53, p21(WAF/CIP1), and p27(KIP1). MEK inhibitors PD98059, U0126, and phosphatidylinositol 3-kinase (PI3K) inhibitor wortmannin, but not p38-inhibitor SB203580 or JNK-inhibitor SP600125 significantly aggravated ginsenoside Rg1-inhibited HASMC proliferation. Ginsenoside Rg1 markedly inactivated the extracellular signal-regulated kinases (ERK1/2) and protein kinase B (PKB), indicating that the inhibition of ginsenoside Rg1 on HASMC proliferation was associated with ERK and PI3K/PKB pathways. The inactivation of ERK and PI3K/PKB pathways and modulation of cell-cycle proteins by ginsenoside Rg1 may be of importance in inhibition of HASMCs proliferation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号