首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1244篇
  免费   67篇
  国内免费   32篇
  2023年   15篇
  2022年   18篇
  2021年   23篇
  2020年   31篇
  2019年   30篇
  2018年   33篇
  2017年   18篇
  2016年   28篇
  2015年   31篇
  2014年   45篇
  2013年   64篇
  2012年   42篇
  2011年   37篇
  2010年   40篇
  2009年   50篇
  2008年   67篇
  2007年   61篇
  2006年   74篇
  2005年   38篇
  2004年   40篇
  2003年   41篇
  2002年   44篇
  2001年   31篇
  2000年   22篇
  1999年   28篇
  1998年   26篇
  1997年   21篇
  1996年   35篇
  1995年   29篇
  1994年   27篇
  1993年   29篇
  1992年   29篇
  1991年   24篇
  1990年   19篇
  1989年   19篇
  1988年   17篇
  1987年   22篇
  1986年   9篇
  1985年   12篇
  1984年   11篇
  1983年   5篇
  1982年   12篇
  1981年   8篇
  1980年   3篇
  1979年   8篇
  1978年   8篇
  1977年   4篇
  1976年   4篇
  1971年   3篇
  1969年   2篇
排序方式: 共有1343条查询结果,搜索用时 15 毫秒
61.
There is mounting evidence that the deoxygenation of coastal marine ecosystems has been underestimated, particularly in the tropics. These physical conditions appear to have far‐reaching consequences for marine communities and have been associated with mass mortalities. Yet little is known about hypoxia in tropical habitats or about the effects it has on reef‐associated benthic organisms. We explored patterns of dissolved oxygen (DO) throughout Almirante Bay, Panama and found a hypoxic gradient, with areas closest to the mainland having the largest diel variation in DO, as well as more frequent persistent hypoxia. We then designed a laboratory experiment replicating the most extreme in situ DO regime found on shallow patch reefs (3 m) to assess the response of the corallivorous fireworm, Hermodice carnaculata to hypoxia. Worms were exposed to hypoxic conditions (8 hr ~ 1 mg/L or 3.2 kPa) 16 times over an 8‐week period, and at 4 and 8 weeks, their oxygen consumption (respiration rates) was measured upon reoxygenation, along with regrowth of severed gills. Exposure to low DO resulted in worms regenerating significantly larger gills compared to worms under normoxia. This response to low DO was coupled with an ability to maintain elevated oxygen consumption/respiration rates after low DO exposure. In contrast, worms from the normoxic treatment had significantly depressed respiration rates after being exposed to low DO (week 8). This indicates that oxygen‐mediated plasticity in both gill morphology and physiology may confer tolerance to increasingly frequent and severe hypoxia in one important coral predator associated with reef decline.  相似文献   
62.
We measured gill slit fluctuating asymmetry (FA), a measure of developmental noise, in adults of three invertebrate deuterostomes with different feeding modes: the cephalochordate Branchiostoma floridae (an obligate filter feeder), the enteropneusts Protoglossus graveolens (a facultative filter feeder/deposit feeder) and Saccoglossus bromophenolosus (a deposit feeder). FA was substantially and significantly low in B. floridae and P. graveolens and high in S. bromophenolosus. Our results suggest that the gills of species that have experienced a relaxation of the filter feeding trait exhibit elevated FA. We found that the timing of development of the secondary collagenous gill bars, compared to the primary gill bars, was highly variable in P. graveolens but not the other two species, demonstrating an independence of gill FA from gill bar heterochrony. We also discovered the occasional ectopic expression of a second set of paired gills posterior to the first set of gills in the enteropneusts and that these were more common in S. bromophenolosus. Moreover, our finding that gill slits in enteropneusts exhibit bilateral symmetry suggests that the left‐sidedness of larval cephalochordate gills, and the directional asymmetry of Cambrian stylophoran echinoderm fossil gills, evolved independently from a bilaterally symmetrical ancestor.  相似文献   
63.
64.
65.
Elongation of the efferent fibers of dorsal root ganglion (DRG) neurons toward their peripheral targets occurs during development. Attractive or permissive systems may be involved in this elongation. However, the molecular mechanisms that control it are largely unknown. Here we show that class 5 semaphorin Sema5A had attractive/permissive effects on DRG axons. In mouse embryos, Sema5A was expressed in and around the path of DRG efferent fibers, and cell aggregates secreting Sema5A attracted DRG axons in vitro. We also found that ectopic Sema5A expression in the spinal cord attracted DRG axons. Together, these findings suggest that Sema5A functions as an attractant to elongate DRG fibers and contributes to the formation of the early sensory network.  相似文献   
66.
Calcium channel family members activate at different membrane potentials which enables tissue specific calcium entry. Pore mutations affecting this voltage dependence are associated with channelopathies. In this review we analyze the link between voltage sensitivity and corresponding kinetic phenotypes of calcium channel activation. Systematic changes in hydrophobicity in the lower third of S6 segments gradually shift the activation curve thereby determining the voltage sensitivity. Homology modeling suggests that hydrophobic residues that are located in all four S6 segments close to the inner channel mouth might form adhesion points stabilizing the closed gate. Simulation studies support a scenario where voltage sensors and the pore are essentially independent structural units. We speculate that evolution designed the voltage sensing machinery as robust "all-or-non" device while the verity of voltage sensitivities of different channel types was accomplished by shaping pore stability.  相似文献   
67.
68.

Background

Hereditary optic neuropathies (HONs) are a heterogeneous group of disorders that affect retinal ganglion cells (RGCs) and axons that form the optic nerve. Leber's Hereditary Optic Neuropathy and the autosomal dominant optic atrophy related to OPA1 mutations are the most common forms. Nonsyndromic autosomal recessive optic neuropathies are rare and their existence has been long debated. We recently identified the first gene responsible for these conditions, TMEM126A. This gene is highly expressed in retinal cellular compartments enriched in mitochondria and supposed to encode a mitochondrial transmembrane protein of unknown function.

Methods

A specific polyclonal antibody targeting the TMEM126A protein has been generated. Quantitative fluorescent in situ hybridization, cellular fractionation, mitochondrial membrane association study, mitochondrial sub compartmentalization analysis by both proteolysis assays and transmission electron microscopy, and expression analysis of truncated TMEM126A constructs by immunofluorescence confocal microscopy were carried out.

Results

TMEM126A mRNAs are strongly enriched in the vicinity of mitochondria and encode an inner mitochondrial membrane associated cristae protein. Moreover, the second transmembrane domain of TMEM126A is required for its mitochondrial localization.

Conclusions

TMEM126A is a mitochondrial located mRNA (MLR) that may be translated in the mitochondrial surface and the protein is subsequently imported to the inner membrane. These data constitute the first step toward a better understanding of the mechanism of action of TMEM126A in RGCs and support the importance of mitochondrial dysfunction in the pathogenesis of HON.

General significance

Local translation of nuclearly encoded mitochondrial mRNAs might be a mechanism for rapid onsite supply of mitochondrial membrane proteins.  相似文献   
69.
Lipid profiles of three strains (Mexico, Australia, Japan) of Chattonella marina (Subrahmanyan) Hara et Chihara were studied under defined growth (phosphate, light, and growth phase) and harvest (intact and ruptured cells) conditions. Triacylglycerol levels were always <2%, sterols <7%, free fatty acids varied between 2 and 33%, and polar lipids were the most abundant lipid class (>51% of total lipids). The major fatty acids in C. marina were palmitic (16:0), eicosapentaenoic (EPA, 20:5ω3), octadecatetraenoic (18:4ω3), myristic (14:0), and palmitoleic (16:1ω7c) acids. Higher levels of EPA were found in ruptured cells (21.4–29.4%) compared to intact cells (8.5–25.3%). In general, Japanese N‐118 C. marina was the highest producer of EPA (14.3–29.4%), and Mexican CMCV‐1 the lowest producer (7.9–27.1%). Algal cultures, free fatty acids from C. marina, and the two aldehydes 2E,4E‐decadienal and 2E,4E‐heptadienal (suspected fatty acid‐derived products) were tested against the rainbow trout fish gill cell line RTgill‐W1. The configuration of fatty acids plays an important role in ichthyotoxicity. Free fatty acid fractions, obtained by base saponification of total lipids from C. marina showed a potent toxicity toward gill cells (median lethal concentration, LC50 (at 1 h) of 0.44 μg · mL?1 in light conditions, with a complete loss of viability at >3.2 μg · mL?1). Live cultures of Mexican C. marina were less toxic than Japanese and Australian strains. This difference could be related to differing EPA content, superoxide anion production, and cell fragility. The aldehydes 2E,4E‐decadienal and 2E,4E‐heptadienal also showed high impact on gill cell viability, with LC50 (at 1 h) of 0.34 and 0.36 μg · mL?1, respectively. Superoxide anion production was highest in Australian strain CMPL01, followed by Japanese N‐118 and Mexican CMCV‐1 strains. Ruptured cells showed higher production of superoxide anion compared to intact cells (e.g., 19 vs. 9.5 pmol · cell?1 · hr?1 for CMPL01, respectively). Our results indicate that C. marina is more ichthyotoxic after cell disruption and when switching from dark to light conditions, possibly associated with a higher production of superoxide anion and EPA, which may be quickly oxidized to produce more toxic derivates, such as aldehydes.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号