首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4842篇
  免费   557篇
  国内免费   585篇
  5984篇
  2024年   18篇
  2023年   139篇
  2022年   191篇
  2021年   246篇
  2020年   279篇
  2019年   298篇
  2018年   239篇
  2017年   237篇
  2016年   260篇
  2015年   254篇
  2014年   338篇
  2013年   397篇
  2012年   195篇
  2011年   290篇
  2010年   185篇
  2009年   305篇
  2008年   245篇
  2007年   253篇
  2006年   208篇
  2005年   237篇
  2004年   202篇
  2003年   185篇
  2002年   162篇
  2001年   108篇
  2000年   82篇
  1999年   69篇
  1998年   56篇
  1997年   41篇
  1996年   38篇
  1995年   38篇
  1994年   45篇
  1993年   24篇
  1992年   32篇
  1991年   17篇
  1990年   13篇
  1989年   8篇
  1988年   8篇
  1987年   8篇
  1986年   8篇
  1985年   8篇
  1984年   5篇
  1983年   5篇
  1981年   8篇
排序方式: 共有5984条查询结果,搜索用时 15 毫秒
41.
42.
Coupling recent advancements in genetic engineering of diverse microbes and gas-driven fermentation provides a path towards sustainable commodity chemical production. Cupriavidus necator H16 is a suitable species for this task because it effectively utilizes H2 and CO2 and is genetically tractable. Here, we demonstrate the versatility of C. necator for chemical production by engineering it to produce three products from CO2 under lithotrophic conditions: sucrose, polyhydroxyalkanoates (PHAs), and lipochitooligosaccharides (LCOs). We engineered sucrose production in a co-culture system with heterotrophic growth 30 times that of WT C. necator. We engineered PHA production (20–60% DCW) and selectively altered product composition by combining different thioesterases and phaCs to produce copolymers directly from CO2. And, we engineered C. necator to convert CO2 into the LCO, a plant growth enhancer, with titers of ~1.4 mg/L—equivalent to yields in its native source, Bradyrhizobium. We applied the LCOs to germinating seeds as well as corn plants and observed increases in a variety of growth parameters. Taken together, these results expand our understanding of how a gas-utilizing bacteria can promote sustainable production.  相似文献   
43.
In the initial step of sugar metabolism, sugar-specific transporters play a decisive role in the passage of sugars through plasma membranes into cytoplasm. The SecY complex (SecYEG) in bacteria forms a membrane channel responsible for protein translocation. The present work shows that permeabilized SecY channels can be used as nonspecific sugar transporters in Escherichia coli. SecY with the plug domain deleted allowed the passage of glucose, fructose, mannose, xylose, and arabinose, and, with additional pore-ring mutations, facilitated lactose transport, indicating that sugar passage via permeabilized SecY was independent of sugar stereospecificity. The engineered E. coli showed rapid growth on a wide spectrum of monosaccharides and benefited from the elimination of transport saturation, improvement in sugar tolerance, reduction in competitive inhibition, and prevention of carbon catabolite repression, which are usually encountered with native sugar uptake systems. The SecY channel is widespread in prokaryotes, so other bacteria may also be engineered to utilize this system for sugar uptake. The SecY channel thus provides a unique sugar passageway for future development of robust cell factories for biotechnological applications.  相似文献   
44.
In this report, small-scale culture and bioreactor experiments were used to compare and improve the heterologous production of the antibiotic erythromycin A across a series of engineered prototype Escherichia coli strains. The original strain, termed BAP1(pBPJW130, pBPJW144, pHZT1, pHZT2, pHZT4, pGro7), was designed to allow full erythromycin A biosynthesis from the exogenous addition of propionate. This strain was then compared against two alternatives hypothesized to increase final product titer. Strain TB3(pBPJW130, pBPJW144, pHZT1, pHZT2, pHZT4, pGro7) is a derivative of BAP1 designed to increase biosynthetic pathway carbon flow as a result of a ygfH deletion; whereas, strain TB3(pBPJW130, pBPJW144, pHZT1, pHZT2, pHZT4-2, pGro7) provided an extra copy of a key deoxysugar glycosyltransferase gene. Production was compared across the three strains with TB3(pBPJW130, pBPJW144, pHZT1, pHZT2, pHZT4, pGro7) showing significant improvement in erythronolide B (EB), 3-mycarosylerythronolide B (MEB), and erythromycin A titers. This strain was further tested in the context of batch bioreactor production experiments with time-course titers leveling at 4 mg/L, representing an approximately sevenfold increase in final erythromycin A titer.  相似文献   
45.
AVCP cytochrome c′ from mesophilic Allochromatium vinosum exhibits lower stability than a thermophilic counterpart, Hydrogenophilus thermoluteolus cytochrome c′ (PHCP), in which the six specific amino acid residues that are not conserved in AVCP are responsible for its stability. Here we measured the stability of AVCP variants carrying these specific residues instead of the original AVCP ones. Among the six single AVCP variants, all of which formed a dimeric structure similar to that of the wild-type, three were successfully stabilized compared with the wild-type, while one showed lower stability than the wild-type. In addition, the most stabilized and destabilized AVCP variants could bind CO, similar to the wild-type. These results indicated that mesophilic AVCP could be stabilized through specific three mutations modeled by the thermophilic counterpart, PHCP, without changing the CO binding ability.  相似文献   
46.
异戊二烯作为一种重要的化工原料,主要用于合成橡胶。此外,还广泛应用于医药或化工中间体、食品、粘合剂及航空燃料等领域。利用微生物法生产异戊二烯因具有环境友好、利用廉价的可再生原料、可持续发展等优势而成为当今研究的热点。这里介绍了大肠杆菌生产异戊二烯的代谢途径及关键酶,从代谢工程的角度出发综述了目前为提高大肠杆菌异戊二烯产量所应用到的方法和策略,并对今后的发展方向进行了展望。  相似文献   
47.
The aggregation of biotherapeutics is a major hindrance to the development of successful drug candidates; however, the propensity to aggregate is often identified too late in the development phase to permit modification to the protein's sequence. Incorporating rational design for the stability of proteins in early discovery has numerous benefits. We engineered out aggregation-prone regions on the Fab domain of a therapeutic monoclonal antibody, bevacizumab, to rationally design a biobetter drug candidate. With the purpose of stabilizing bevacizumab with respect to aggregation, 2 strategies were undertaken: single point mutations of aggregation-prone residues and engineering a glycosylation site near aggregation-prone residues to mask these residues with a carbohydrate moiety. Both of these approaches lead to comparable decreases in aggregation, with an up to 4-fold reduction in monomer loss. These single mutations and the new glycosylation pattern of the Fab domain do not modify binding to the target. Biobetters with increased stability against aggregation can therefore be generated in a rational manner, by either removing or masking the aggregation-prone region or crowding out protein-protein interactions.  相似文献   
48.
49.
Industrial plant biotechnology applications include the production of sustainable fuels, complex metabolites and recombinant proteins, but process development can be impaired by a lack of reliable and scalable screening methods. Here, we describe a rapid and versatile expression system which involves the infusion of Agrobacterium tumefaciens into three‐dimensional, porous plant cell aggregates deprived of cultivation medium, which we have termed plant cell packs (PCPs). This approach is compatible with different plant species such as Nicotiana tabacum BY2, Nicotiana benthamiana or Daucus carota and 10‐times more effective than transient expression in liquid plant cell culture. We found that the expression of several proteins was similar in PCPs and intact plants, for example, 47 and 55 mg/kg for antibody 2G12 expressed in BY2 PCPs and N. tabacum plants respectively. Additionally, the expression of specific enzymes can either increase the content of natural plant metabolites or be used to synthesize novel small molecules in the PCPs. The PCP method is currently scalable from a microtiter plate format suitable for high‐throughput screening to 150‐mL columns suitable for initial product preparation. It therefore combined the speed of transient expression in plants with the throughput of microbial screening systems. Plant cell packs therefore provide a convenient new platform for synthetic biology approaches, metabolic engineering and conventional recombinant protein expression techniques that require the multiplex analysis of several dozen up to hundreds of constructs for efficient product and process development.  相似文献   
50.
Tissue scaffolds play a crucial role in the tissue regeneration process. The ideal scaffold must fulfill several requirements such as having proper composition, targeted modulus, and well-defined architectural features. Biomaterials that recapitulate the intrinsic architecture of in vivo tissue are vital for studying diseases as well as to facilitate the regeneration of lost and malformed soft tissue. A novel biofabrication technique was developed which combines state of the art imaging, three-dimensional (3D) printing, and selective enzymatic activity to create a new generation of biomaterials for research and clinical application. The developed material, Bovine Serum Albumin rubber, is reaction injected into a mold that upholds specific geometrical features. This sacrificial material allows the adequate transfer of architectural features to a natural scaffold material. The prototype consists of a 3D collagen scaffold with 4 and 3 mm channels that represent a branched architecture. This paper emphasizes the use of this biofabrication technique for the generation of natural constructs. This protocol utilizes a computer-aided software (CAD) to manufacture a solid mold which will be reaction injected with BSA rubber followed by the enzymatic digestion of the rubber, leaving its architectural features within the scaffold material.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号