首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   887篇
  免费   177篇
  国内免费   14篇
  2024年   3篇
  2023年   20篇
  2022年   17篇
  2021年   38篇
  2020年   70篇
  2019年   72篇
  2018年   54篇
  2017年   50篇
  2016年   67篇
  2015年   55篇
  2014年   75篇
  2013年   76篇
  2012年   47篇
  2011年   63篇
  2010年   43篇
  2009年   63篇
  2008年   39篇
  2007年   39篇
  2006年   39篇
  2005年   19篇
  2004年   15篇
  2003年   23篇
  2002年   16篇
  2001年   13篇
  2000年   7篇
  1999年   11篇
  1998年   11篇
  1997年   6篇
  1996年   6篇
  1995年   5篇
  1994年   2篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1989年   2篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1980年   3篇
  1979年   1篇
排序方式: 共有1078条查询结果,搜索用时 78 毫秒
51.
There are examples of coexisting species with similar morphology and ecology, in apparent contradiction to competition theory. Shrews (Soricidae) are a paradigmatic example of this because members of this group exhibit a conserved body form, relatively low variability in lifestyle, and, in many cases, a sympatric distribution. Here, we combined geometric morphometrics and ecological niche modeling to test whether diversification of soricid species inhabiting the Iberian Peninsula has been driven by niche divergence or, conversely, whether niche conservatism has played a paramount role in this process. We also examined whether pairwise morphological distances increase as the degree of niche overlap between species becomes greater, as would be expected if interspecific competition promotes morphological differentiation. Our results showed that water shrews (Neomys), white‐toothed shrews (Crocidurinae), and red‐toothed shrews (Soricinae) are clearly differentiated in terms of both skull shape and mandible shape. However, we found a lack of phylogenetic signal in most morphological traits, indicating that closely related species are not more similar than expected by random chance. Notably, water shrews show a more “triangular” or sharp skull than white‐toothed and red‐toothed shrews, probably as an adaptation to their semiaquatic lifestyle. In agreement with the phenotypic data, climatic traits (mean annual temperature and annual precipitation) were highly labile and sister taxa showed extensive differentiation in their realized niche space. Finally, we found that phenotypic distances between species tend to increase as the degree of niche overlap increases, suggesting that interspecific competition is an important factor in determining the level of morphological resemblance among relatives. Overall, our results indicate that the existence of limited morphological disparity in a given group does not necessarily imply the existence of a niche conservatism signature.  相似文献   
52.
The body shape of a species is associated with its evolutionary history and can reflect behavioural peculiarities related to the ecological niche of each species. Morphology can characterise the morphometric niche of species and can be represented as body shape points within a morphometric universe. This information can be to calculate the morphometric diversity of communities through hypervolume metrics, and the hole sizes that remain in the morphometric hypervolume, which are empty areas with no species. Such holes may be ‘natural’ or caused by a local extinction. In this study, we evaluate the ecological community of dung beetles through the lens of morphometric diversity. We evaluated 38 dung beetle species from 30 subtropical communities in southern Brazil sampled in the summer of 2015, including 15 forest remnant communities from the Atlantic Forest and 15 communities from adjacent maize cultivations. The shape of 495 dung beetle specimens was measured using geometric morphometric and hypervolume techniques to calculate the morphometric diversity and the hole size of each of the 30 communities. We found that the taxonomic diversity positively correlated with the morphometric diversity and negatively correlated with the size of the holes. We also found that forest communities had higher values of morphometric diversity and smaller holes in the hypervolume than the maize cultivation communities, suggesting that local extinction may reduce community body shape spaces.  相似文献   
53.
The nutrient‐rich organic waste generated by ants may affect plant reproductive success directly by enhancing fruit production but also indirectly, by affecting floral traits related with pollinator attraction. Understanding how these soil‐nutrient hot spots influence floral phenotype is relevant to plant–pollination interactions. We experimentally evaluated whether the addition of organic waste from refuse dumps of the leaf‐cutting ant Acromyrmex lobicornis (Hymenoptera: Formicidae: Attini) alters floral traits associated with pollinator attraction in Eschscholzia californica (Ranunculales: Papaveraceae), an entomophilous herb. We analysed flower shape and size using geometric morphometric techniques in plants with and without the addition of refuse‐dumps soil, under greenhouse conditions. We also measured the duration of flowering season, days with new flowers, flower production and floral display size. Plants growing in refuse‐dumps soil showed higher flower shape diversity than those in control soil. Moreover, plants in refuse‐dumps soil showed bigger flower and floral display size, longer flowering season, higher number of flowering days and flower production. As all these variables may potentially increase pollinator visits, plants in refuse‐dumps soil might increase their fitness through enhanced attraction. Our work describes how organic waste from ant nests may enhance floral traits involved in floral attraction, illustrating a novel way of how ants may indirectly benefit plants.  相似文献   
54.
本文使用几何形态测量法探讨42例成年太行山猕猴Macaca mulatta tcheliensis髋臼的性别二态性。结果显示,太行山猕猴雌雄个体的髋臼形态具有明显的性别二态性,利用髋臼可以正确判别92.3%的雌性和87.5%的雄性个体。髋臼的形态差异主要分布于月状面的后上部,即与髋臼切迹相对的月状面区域的宽度表现为雄性大于雌性,另外雄性髋臼大小的波动范围也比雌性更广。造成髋臼性别二态性的生物学原因可能与其功能有关,髋臼作为髋关节的组成部分,起着支撑身体和协同运动的功能,能够优化关节接触面的压力分布。推测雄性髋臼受到的体质量压力更大可能是雄性进化出比雌性更宽大的月状面的主要原因。  相似文献   
55.
Although genetic and plastic responses are sometimes considered as unrelated processes, their phenotypic effects may often align because genetic adaptation is expected to mirror phenotypic plasticity if adaptive, but run counter to it when maladaptive. Because the magnitude and direction of this alignment has further consequences for both the tempo and mode of adaptation, they are relevant for predicting an organisms’ reaction to environmental change. To better understand the interplay between phenotypic plasticity and genetic change in mediating adaptive phenotypic variation to climate variability, we here quantified genetic latitudinal variation and thermal plasticity in wing loading and wing shape in two closely related and widespread sepsid flies. Common garden rearing of 16 geographical populations reared across multiple temperatures revealed that wing loading decreases with latitude in both species. This pattern could be driven by selection for increased dispersal capacity in the cold. However, although allometry, sexual dimorphism, thermal plasticity and latitudinal differentiation in wing shape all show similar patterns in the two species, the relationship between the plastic and genetic responses differed between them. Although latitudinal differentiation (south to north) mirrored thermal plasticity (hot to cold) in Sepsis punctum, there was no relationship in Sepsis fulgens. While this suggests that thermal plasticity may have helped to mediate local adaptation in S. punctum, it also demonstrates that genetic wing shape differentiation and its relation to thermal plasticity may be complex and idiosyncratic, even among ecologically similar and closely related species. Hence, genetic responses can, but do not necessarily, align with phenotypic plasticity induced by changing environmental selection pressures.  相似文献   
56.
Invasive species can encounter environments different from their source populations, which may trigger rapid adaptive changes after introduction (niche shift hypothesis). To test this hypothesis, we investigated whether postintroduction evolution is correlated with contrasting environmental conditions between the European invasive and source ranges in the Asian tiger mosquito Aedes albopictus. The comparison of environmental niches occupied in European and source population ranges revealed more than 96% overlap between invasive and source niches, supporting niche conservatism. However, we found evidence for postintroduction genetic evolution by reanalyzing a published ddRADseq genomic dataset from 90 European invasive populations using genotype–environment association (GEA) methods and generalized dissimilarity modeling (GDM). Three loci, among which a putative heat‐shock protein, exhibited significant allelic turnover along the gradient of winter precipitation that could be associated with ongoing range expansion. Wing morphometric traits weakly correlated with environmental gradients within Europe, but wing size differed between invasive and source populations located in different climatic areas. Niche similarities between source and invasive ranges might have facilitated the establishment of populations. Nonetheless, we found evidence for environmental‐induced adaptive changes after introduction. The ability to rapidly evolve observed in invasive populations (genetic shift) together with a large proportion of unfilled potential suitable areas (80%) pave the way to further spread of Ae. albopictus in Europe.  相似文献   
57.
Two new lanostane triterpenes, ganorbifoins A and B (1-2), together with the known compound (25S,3′S)-(+)-12α-hydroxy-3α-(3′-hydroxy-4′-methoxycarbonyl-3′-methylbutiryloxy)-24-methyllanosta-824-(31)-dien-26-oic acid (3) were isolated from the cultivated fruiting bodies of Ganoderma orbiforme. The structures of isolates were determined by extensive analysis of NMR and HRESIMS. All compounds induced glucose uptake in zebrafish-based system at the concentration of 10 μM. And the best performing compound is ganorbifoin A. Compounds 2 and 3 exhibited an inhibitory effect on nitric oxide production in LPS-induced BV-2 microglia cells at the concentration of 20 μM.  相似文献   
58.
Absolute fitness, relative fitness, and utility   总被引:2,自引:0,他引:2  
It is well known that (1) natural selection typically favors an allele with both a large mean fitness and a small variance in fitness; and (2) investors typically prefer a portfolio with both a large mean return and a small variance in returns. In the case of investors, this mean-variance trade-off reflects risk aversion; in the case of evolution, the mathematics is straightforward but the result is harder to intuit. In particular, it is harder to understand where, in the mathematics of natural selection, risk aversion arises. Here I present a result that suggests a simple answer to this question. Although my answer is essentially identical to one offered previously, my path to it differs somewhat from previous approaches. Some may find this new approach easier to intuit.  相似文献   
59.
Although theory indicates that natural selection can facilitate speciation as a by-product, demonstrating ongoing speciation via this by-product mechanism in nature has proven difficult. We examined morphological, molecular, and behavioral data to investigate ecology's role in incipient speciation for a post-Pleistocene radiation of Bahamas mosquitofish (Gambusia hubbsi) inhabiting blue holes. We show that adaptation to divergent predator regimes is driving ecological speciation as a by-product. Divergence in body shape, coupled with assortative mating for body shape, produces reproductive isolation that is twice as strong between populations inhabiting different predator regimes than between populations that evolved in similar ecological environments. Gathering analogous data on reproductive isolation at the interspecific level in the genus, we find that this mechanism of speciation may have been historically prevalent in Gambusia. These results suggest that speciation in nature can result as a by-product of divergence in ecologically important traits, producing interspecific patterns that persist long after speciation events have completed.  相似文献   
60.
Being the principal component of biological membranes lipids are essential building blocks of life. Given their huge biological importance, the investigation of lipids, their properties, interactions and metabolic pathways is of prime importance for the fundamental understanding of living cells and organisms as well as the emergence of diseases. Different strategies have been applied to investigate lipid-mediated biological processes, one of them being the use of lipid mimetics. They structurally resemble their natural counterparts but are equipped with functionality that can be used to probe or manipulate lipid-mediated biological processes and biomembranes. Lipid mimetics therefore constitute an indispensable toolbox for lipid biology and membrane research but also beyond for potential applications in medicine or synthetic biology. Herein, we highlight recent advances in the development and application of lipid-mimicking compounds.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号