首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   11篇
  国内免费   4篇
  181篇
  2023年   5篇
  2022年   4篇
  2020年   9篇
  2019年   14篇
  2018年   5篇
  2017年   5篇
  2016年   6篇
  2015年   7篇
  2014年   8篇
  2013年   13篇
  2012年   5篇
  2011年   7篇
  2010年   6篇
  2009年   4篇
  2008年   8篇
  2007年   12篇
  2006年   7篇
  2005年   8篇
  2004年   5篇
  2002年   3篇
  2001年   3篇
  2000年   4篇
  1999年   4篇
  1998年   4篇
  1997年   5篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1988年   5篇
  1987年   3篇
  1986年   1篇
  1985年   5篇
排序方式: 共有181条查询结果,搜索用时 15 毫秒
121.
122.
Transgenic systems, both cell lines and mice with gain or loss of function, are being used in order to modulate the expression of DNA repair proteins, thus allowing to assess their contribution to the defense against genotoxic mutagens and carcinogens. In this review, questions have been addressed concerning the use of transgenic systems in elucidating critical primary DNA lesions, their conversion into genotoxic endpoints, low-dose effects, and the relative contribution of individual cellular functions in defense. It has been shown that the repair protein alkyltransferase (MGMT) is decisive for protection against methylating and chloroethylating compounds. Protection pertains also to tumor formation, as revealed by the response of MGMT transgenic and knockout mice. Overexpression of genes involved in base excision repair (N-methylpurine-DNA glycosylase, apurinic endonuclease, DNA polymerase β) is in most cases not beneficial in increasing the protection level, whereas their down-modulation or inactivation increases cellular sensitivity. This indicates that non-repaired base N-alkylation lesions and/or repair intermediates possess genotoxic potential. Modulation of mismatch repair and poly(ADP)ribosyl transferase has also been shown to affect the cellular response to alkylating agents. Furthermore, the role of Fos, Jun and p53 in cellular defense against alkylating mutagens is discussed.  相似文献   
123.
We report here results on forward mutation induction (recessive lethal mutations, RL) in Drosophila spermatozoa and spermatids by the three 1,2-alkyl-epoxides ethylene oxide (EO), propylene oxide (PO) and butylene oxide (BO), at doses ranging from 47 to 24,000 ppm h for EO, 375 to 48,000 ppm h for PO, and 24,000 to 91,200 ppm h for BO. The results indicate for EO mutation induction at doses 500-fold below the LD50. In crosses of mutagenized NER+ males with NER+ females, the 500-fold increase in EO dose from 47 ppm h to 24,000 ppm h resulted in no more than a 17-fold enhanced mutant frequency in spermatozoa. This flat dose–response relationship is primarily the result of efficient repair of EO-induced DNA adducts in the fertilized egg, as was evident from the up to 40-fold or 240-fold increased mutant frequencies above NER or NER+ background levels, respectively, in crosses with NER females. With decreasing dose, / ratios decreased from 9 to 14 at high doses down to ≈1 at the two lowest doses, indicating that a small fraction of premutagenic lesions induced by EO cannot be repaired by the NER system of Drosophila. Linear extrapolation from high to low EO exposure led to an underestimation of the mutation frequency actually observed at low doses. The pattern of EO-induced ring chromosome loss (CL) differed in two respects from that observed for forward mutations: (a) an increase in CL frequencies was observed only at the two highest EO exposure levels, and (b) inactivation of the NER pathway by the mus201 mutant had no measurable effect on the occurrence of CL. The absence of a potentiating effect of mus201 on EO-induced clastogenicity suggests the formation of clastogenic DNA lesions not causing point mutations, and which are not repaired by NER. Consistent with an inversed correlation of reactivities towards N7-guanine and chain length of 1,2-alkyl-epoxides, the relative mutagenic efficiencies of EO:PO:BO are 100:7.2:1.8 for the NER+ groups, and 100:20:0.7 in the absence of NER. Although in Drosophila germ cells EO is also more effective as a clastogen than PO, the difference (EO:PO=100:58) is much smaller than for recessive mutations. These results provide another argument that DNA lesions generating base substitutions as opposed to those causing clastogenic damage may not be the same for these agents.  相似文献   
124.
In the present work the influence of the administration of industrial emissions from a zinc and copper plant on aspartate aminotransferase (AST), alanine aminotransferase, gammaglutamyl transferase, creatine phosphokinase (CK), total bilirubin, serum zinc levels and the genetic apparatus was studied on seven ewes. Each animal was given a dose of 31.99 g of emissions per day. The first and the last animals died of zinc intoxication on days 42 and 58, respectively. Significantly increased zincemia could be observed from day 8 of the experiment (P < 0.01). In the enzymes under investigation, the most pronounced effects of the emission were seen in AST and CK activities. In comparison with the starting levels, AST values revealed significant differences on days 37 and 58 (P < 0.05 and P < 0.01, respectively), and CK on day 58 (P < 0.01). Significantly increased bilirubinemia (P < 0.01) could be observed from day 8 of the experiment. In the period prior to the first gavage of emission and day 30 of administration no significant increase of chromosome breaks per cell was observed in the experimental sheep. The genotoxic effect of the emission was also stated on the basis of recombination frequency visualized by means of the sister chromatid exchange test; on day 30, the increase of these disturbances revealed statistical significance (P < 0.01).  相似文献   
125.
The present study highlights the nanoimpact of cadmium sulfide quantum dots on a plant system (Sesamum indicum L.) encompassing uptake of nanoparticles (NPs), subsequent translocation following root to leaf transportation pathway using both water- and food-conducting elements and deposition in nucleus and cytoplasm with no preferential subcellular localization. Nanocrystal agglomeration, mucilaginous sheathing and vesicularization studied are the host toxicity minimization attempt. Cellular stress due to NPs is recorded in the form of elevated production of hydrogen peroxide and malondialdehyde. However, non-synchronous activation of ascorbate peroxidase-monodehydroascorbate reductase-glutathione reductase-glutathione S-transferase enzyme system contributes to failure of anti-oxidative response and persistence of stress environment. Flow cytometric assessment reveals changes in cellular metabolic event along with blockage of cell division at G1 phase and enhances apoptotic cell death. Nuclear internalization along with oxidative burst results in generation of DNA double-strand break which can be the focal point of genome alteration and subsequent gene mutation.  相似文献   
126.
Breast cancer is the most diagnosed type of cancer among women for which an exhaustive cure has not been discovered yet. Nowadays, tamoxifen still represents the gold standard for breast cancer therapy; it acts on both estrogen receptor-positive and estrogen receptor-negative breast cancers. Unfortunately, its toxicity and the related chemoresistance undermine its antitumor potential. In this paper, new tamoxifen-based derivatives with a rigid structural motif in their structure were designed, synthesized, and evaluated to assess their antitumor behavior. All the tested compounds affected estrogen receptor-positive tumor (MCF-7) cell growth, even with different extents, among which, the most active ones proved also to induce mitochondria-mediated apoptosis through activation of PARP cleavage, decrease in Bax/Bcl-2 ratio and increase in Bim gene expression levels. Here we found that the compound 1, carrying a rigid xanthene core, turned out to be the most promising of the set showing an activity profile comparable to that of tamoxifen. Furthermore, a more favorable genotoxic profile than tamoxifen made compound 1 a promising candidate for further studies.  相似文献   
127.
Although benzene, a well-known human carcinogen, has been shown to induce apoptosis in vitro, no studies have been carried out to confirm and characterize its role in activating apoptosis in vivo. The present study investigated the effects of benzene inhalation on the epithelial cells lining the respiratory tract including bronchioles, terminal bronchioles, respiratory bronchioles and alveoli of male Sprague-Dawley rats. Inhalation of benzene 300 ppm for 7 days induced apoptotic changes in the parenchymal components in the lung that significantly exceeded the events of programmed cell death in normal control tissues. Apoptosis was confirmed by the electrophoretic analysis of internucleosomal DNA fragmentation of benzene-exposed lung tissues, which exhibited 180–200 bp laddering subunits indicative of genomic DNA degradation. Furthermore, semi-quantitative analysis of intracellular localization of terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling TUNEL) showed a significant (p < 0.001) increase in the apoptotic index calculated for bronchiolar 73.5%, terminal bronchiolar (65%), and respiratory bronchiolar 60.8% segmental epithelial components as well as alveolar (55%) epithelia. Analysis of immunohistochemical expression of apoptosis-related gene products also supported the hypothesis that benzene can induce apoptosis in chemosensitive target cells in the lung parenchyma. Quantitative immunhistochemistry showed a statistically significant increase p < 0.001 in the immunoreactive staining index for cytochrome c, Apaf-1 (apoptosis activating factor-1), DNA fragmentation factor, and representative cysteine proteases including caspase-1, caspase-2L, caspase-8 and caspase-9. Thus this is the first study of the respiratory system that demonstrates that benzene inhalation induces lung cell apoptosis as confirmed by DNA electrophoresis, in situ nick end labeling, and the upregulation of apoptosis-related gene products that facilitate caspase-cleaved enzymes which lead to cell degradation via programmed cell death. These responses may represent an important defense mechanism within the parenchymal cells of the respiratory system that reduce mutational hazard and the potential carcinogenic effects of benzene-initiated pathogenesis.  相似文献   
128.
Nitroimidazoles exhibit high microbicidal activity, but mutagenic, genotoxic and cytotoxic properties have been attributed to the presence of the nitro group. However, we synthesised nitroimidazoles with activity against the trypomastigotes of Trypanosoma cruzi, but that were not genotoxic. Herein, nitroimidazoles (11-19) bearing different substituent groups were investigated for their potential induction of genotoxicity (comet assay) and mutagenicity (Salmonella/Microsome assay) and the correlations of these effects with their trypanocidal effect and with megazol were investigated. The compounds were designed to analyse the role played by the position of the nitro group in the imidazole nucleus (C-4 or C-5) and the presence of oxidisable groups at N-1 as an anion receptor group and the role of a methyl group at C-2. Nitroimidazoles bearing NO2 at C-4 and CH3 at C-2 were not genotoxic compared to those bearing NO2 at C-5. However, when there was a CH3 at C-2, the position of the NO2 group had no influence on the genotoxic activity. Fluorinated compounds exhibited higher genotoxicity regardless of the presence of CH3 at C-2 or NO2 at C-4 or C-5. However, in compounds 11 (2-CH3; 4-NO2; N-CH2OHCH2Cl) and 12 (2-CH3; 4-NO2; N-CH2OHCH2F), the fluorine atom had no influence on genotoxicity. This study contributes to the future search for new and safer prototypes and provide.  相似文献   
129.
130.
Cancer is a highly aggressive and devastating disease, and impediments to a cure arise not just from cancer itself. Targeted therapies are difficult to achieve since the majority of cancers are more intricate than ever imagined. Mainstream methodologies including chemotherapy and radiotherapy as routine clinical regimens frequently fail, eventually leading to pathologies that are refractory and incurable. One major cause is the gradual to rapid repopulation of surviving cancer cells during intervals of multiple-dose administration. Novel stress-responsive molecular pathways are increasingly unmasked and show promise as emerging targets for advanced strategies that aim at both de novo and acquired resistance. We highlight recent data reporting that treatments particularly those genotoxic can induce highly conserved damage responses in non-cancerous constituents of the tumor microenvironment (TMEN). Master regulators, including but not limited to NF-kB and C/EBP-β, are implicated and their signal cascades culminate in a robust, chronic and genome-wide secretory program, forming an activated TMEN that releases a myriad of soluble factors. The damage-elicited but essentially off target and cell non-autonomous secretory phenotype of host stroma causes adverse consequences, among which is acquired resistance of cancer cells. Harnessing signals arising from the TMEN, a pathophysiological niche frequently damaged by medical interventions, has the potential to promote overall efficacy and improve clinical outcomes provided that appropriate actions are ingeniously integrated into contemporary therapies. Thereby, anticancer regimens should be well tuned to establish an innovative clinical avenue, and such advancement will allow future oncological treatments to be more specific, accurate, thorough and personalized.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号