首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   166篇
  免费   11篇
  国内免费   4篇
  2023年   5篇
  2022年   4篇
  2020年   9篇
  2019年   14篇
  2018年   5篇
  2017年   5篇
  2016年   6篇
  2015年   7篇
  2014年   8篇
  2013年   13篇
  2012年   5篇
  2011年   7篇
  2010年   6篇
  2009年   4篇
  2008年   8篇
  2007年   12篇
  2006年   7篇
  2005年   8篇
  2004年   5篇
  2002年   3篇
  2001年   3篇
  2000年   4篇
  1999年   4篇
  1998年   4篇
  1997年   5篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1991年   2篇
  1988年   5篇
  1987年   3篇
  1986年   1篇
  1985年   5篇
排序方式: 共有181条查询结果,搜索用时 46 毫秒
101.
Aims: To investigate the ability of bacilli of various species (Bacillus clausii, Bacillus subtilis, Bacillus lentus, Bacillus pumilus. Bacillus megaterium, Bacillus firmus, Bacillus sp.) and origins (probiotic and collection strains) to counteract the activity of some representative DNA‐reactive agents. Methods and Results: The inhibitory effect of 21 bacilli strains, previously characterized by tDNA‐PCR, on four genotoxins, was examined in vitro using the short‐term assay SOS‐Chromotest. All strains had a high inhibitory activity against 4‐nitroquinoline‐1‐oxide and N‐methyl‐N′‐nitro‐nitrosoguanidine (direct agents), whereas the inhibitory activity was high or moderate against 2‐amino‐3,4‐dimethylimidazo[4,5‐f]quinoline and aflatoxin B1 (indirect agents). Antigenotoxicity was observed in vegetative cells, but not heat‐treated cells or spore suspensions. The spectroscopic properties of compounds were modified after cell co‐incubation and all the strains maintained high viability after exposure to the genotoxins. Conclusions: No relevant differences in antigenotoxicity were evidenced among strains of the examined species or between probiotic and collection strains. Significance and Impact of the Study: Although derived from an in vitro model, the results suggest that Bacillus‐based probiotics could be useful for reducing the gastrointestinal risk originating from genotoxic agents.  相似文献   
102.
Immobilization of biologically important molecules on a myriad of nanosized materials has attracted great attention due to their small size, biocompatibility, higher surface-to-volume ratio, and lower toxicity. These properties make nanoparticles (NPs) a superior matrix over bulk material for the immobilization of enzymes and proteins. In the present study, Bacillus amyloliquefaciens α-amylase was immobilized on SnO2 nanoparticles by a simple adsorption mechanism. Nanoparticle-adsorbed enzyme retained 90% of the original enzyme activity. Thermal stability of nanosupport was investigated by thermogravimetric and differential thermal analysis. Scanning electron microscopic studies showed that NPs have porous structure for the high-yield immobilization of α-amylase. The genotoxicity of SnO2-NPs was analyzed by pUC19 plasmid nicking and comet assay and revealed that no remarkable DNA damage occurred in lymphocytes. The pH-optima was found to be the same for both free and SnO2-NPs bound enzyme, while the temperature-optimum for NPs-adsorbed α-amylase was 5°C higher than its free counterpart. Immobilized enzyme retained more than 70% enzyme activity even after its eight repeated uses.  相似文献   
103.
ABSTRACT

The micronucleus (MN) technique is commonly used for genotoxicity testing. The hen’s egg test (HET) for analysis of MN induction (HET-MN) is an inexpensive, rapid and simple genotoxicity assay that is compatible with animal protection and ethical considerations. Ganoderma lucidum (Curtis) P. Karst is known also as reishi mushroom and mushroom of immortality. It has long been used to treat disorders including fungal infections, influenza, common cold, hepatitis, diabetes, high cholesterol and cancer in many countries including China and Japan. G. lucidum strengthens the immune system and reduces the side effects of chemo- and radiotherapy. We investigated the possible genotoxic and antigenotoxic effects of the aqueous extract of wild-grown G. lucidum from Turkey using the HET-MN test. Three different doses of aqueous extract of G. lucidum, 50 µg/egg vitamin C as an antigenotoxic agent and 50 µg/egg cyclophosphamide as a genotoxic compound were injected separately or together into fertilized chicken eggs at incubation day 8. Embryonic peripheral blood smears were prepared and stained with a modified May-Grünwald-Giemsa method on incubation day 11. The frequencies of MN and nuclear abnormalities in erythrocytes were determined using light microscopy. Although the aqueous extract G. lucidum exhibited no genotoxic effect, it did exhibit an antigenotoxic effect. Our findings suggest that G. lucidum extract is a valuable natural antigenotoxic agent.  相似文献   
104.
目的:探究汉口、汉阳两地空气细颗粒物PM2.5的遗传毒性。方法:采用Ames波动实验和双核细胞微核实验评价PM2.5在基因和染色体水平是否具有遗传毒性。结果:Ames波动实验结果表明,汉口和汉阳PM2.5对鼠伤寒沙门苗TA100无致突变作用;而在双核细咆徽核实验中,两地PM2.5随浓度上升徽核率逐渐上升,呈剂量反应关系,对染色体有损伤作用。2项实验结果都显示,汉口和汉阳两地的颗粒物在致遗传性上无明显差异。结论:汉口、汉阳两地PM2.5具有一定的潜在遗传毒性。  相似文献   
105.
Abstract

Background: Fungicides describe all chemicals used to control fungi that infect plants. Luna Experience SC-400 is a new line of fungicide that consist of Fluopyram and Tebuconazole.

Objective: In this study, We investigated the genotoxicty and cytotoxicty of Luna Experience-SC 400 using comet assay, micronucleus test and polychromatic erythrocytes number in rat bone marrow. The present study is the first report indicating the effects of genotoxic and cytotoxic of Luna experience SC-400 on rat bone marrow cells.

Material and Methods: We used three different doses (5mg/kg, 10mg/kg, 20mg/kg) of Luna Experience SC 400 at 48 h intervals during 30 days by gavage in rats.Genotoxicity was evaluated using comet assay and micronucleus test and cytotoxicity was measured the PCE/NCE rate in rat bone marrow.

Results: Based on these experimental results, we report that Luna Experience-SC 400 fungicide presents genotoxic and cytotoxic potential on rat bone marrow. There is a significant difference between negative control group and all the doses of Luna Experience-SC 400 (p?<?0.05) for comet assay and micronucleus. Even moderate and high doses of fungicides seem to have reached the values of almost positive control group for Genetic Damage Index (GDI) and Damaged Cell Percentage (DCP). In this study, we also investigated the PCE/NCE rate. Fungicide caused a decrease in the level of significant in the PCE/NCE ratio (p?<?0.05).

Conclusion: Our in vivo study suggests that the gavage exposure to Luna experience SC 400 used in the present investigation may be genotoxic and cytotoxic in rat bone marrow in view of these findings. Because this findings is first report represented in the pesticide biology, it is important to carry out more investigations using various cytogenetic tests under different experimental conditions to definitively resolve the the possible genotoxic and cytotoxic risk associated with new generation pesticides-fungicides.  相似文献   
106.
107.
108.
Purpose: The main goal of the present study was to determine DNA damage in pesticide-exposed greenhouse workers and pesticides non-exposed controls.

Materials and methods: The DNA damage was measured by alkaline comet assay method (pH?>?13) in 41 greenhouse workers and 45 non-exposed individuals as the control. Pesticide exposure was assessed by duration of working in the greenhouse and pesticide application in the greenhouse time. DNA damage was estimated by arbitrary unit and damage frequency.

Results: Arbitrary unit and damage frequency were consistently significantly higher in greenhouse workers than those of the controls (p?=?0.001). In terms of gender in greenhouse, DNA damage of female workers was significantly higher than those in male workers (p?<?0.05). We found significant correlation between DNA damage and working hours spent. Multiple linear regression analysis showed that working hours in the greenhouse as an indication of pesticide exposure were significantly associated with the DNA damage, which can be attributed to the genotoxic potential of the pesticide mixture.

Conclusions: The comet assay is sensitive to detect the damage exposed to chronic effect of pesticides in greenhouse workers. Significant DNA damage was obtained for the exposed group, which was associated with the pesticide exposure.  相似文献   

109.
Nitroimidazoles exhibit high microbicidal activity, but mutagenic, genotoxic and cytotoxic properties have been attributed to the presence of the nitro group. However, we synthesised nitroimidazoles with activity against the trypomastigotes of Trypanosoma cruzi, but that were not genotoxic. Herein, nitroimidazoles (11-19) bearing different substituent groups were investigated for their potential induction of genotoxicity (comet assay) and mutagenicity (Salmonella/Microsome assay) and the correlations of these effects with their trypanocidal effect and with megazol were investigated. The compounds were designed to analyse the role played by the position of the nitro group in the imidazole nucleus (C-4 or C-5) and the presence of oxidisable groups at N-1 as an anion receptor group and the role of a methyl group at C-2. Nitroimidazoles bearing NO2 at C-4 and CH3 at C-2 were not genotoxic compared to those bearing NO2 at C-5. However, when there was a CH3 at C-2, the position of the NO2 group had no influence on the genotoxic activity. Fluorinated compounds exhibited higher genotoxicity regardless of the presence of CH3 at C-2 or NO2 at C-4 or C-5. However, in compounds 11 (2-CH3; 4-NO2; N-CH2OHCH2Cl) and 12 (2-CH3; 4-NO2; N-CH2OHCH2F), the fluorine atom had no influence on genotoxicity. This study contributes to the future search for new and safer prototypes and provide.  相似文献   
110.
Insect growth regulator insecticides are a new class of pesticides, commonly used around the world to control insect damages. Among those compounds, we focused our interest on triflumuron (TFM), which is less toxic than other conventional insecticides. However, not much is known about its toxic effects on mammalian systems. Therefore, our study aimed toward evaluating the cytotoxic and genotoxic effects of TFM using two different cell lines, the human renal embryonic cells (HEK 293) and hepatocytes (Hep G2). We showed, according to the 3‐(4,5‐dimethylthiazol‐2‐yl)‐2,5‐diphenyltetrazolium bromide assay, that TFM reduced significantly the cell viability and increased the reactive oxygen species generation, malondialdehyde levels, and mitochondrial membrane potential in both cell lines. The antioxidant system was disturbed as assessed by the increased activities in both catalase and superoxide dismutase. We demonstrated also, that TFM is an inductor of DNA damages quantified by the comet assay. Moreover, we showed an overexpression of proapoptotic Bax and a decrease in antiapoptotic Bcl‐2 expression. As a conclusion, we demonstrate that the liver presents the major target organ to TFM, in which the cytotoxicity and the genotoxic effects were significantly higher in hepatic cells than in renal cells and by consequence its uses must be controlled.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号