首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2969篇
  免费   395篇
  国内免费   132篇
  2024年   5篇
  2023年   104篇
  2022年   115篇
  2021年   199篇
  2020年   157篇
  2019年   165篇
  2018年   142篇
  2017年   156篇
  2016年   120篇
  2015年   165篇
  2014年   207篇
  2013年   167篇
  2012年   145篇
  2011年   139篇
  2010年   96篇
  2009年   125篇
  2008年   168篇
  2007年   162篇
  2006年   190篇
  2005年   213篇
  2004年   167篇
  2003年   144篇
  2002年   120篇
  2001年   58篇
  2000年   38篇
  1999年   16篇
  1998年   7篇
  1997年   5篇
  1996年   1篇
排序方式: 共有3496条查询结果,搜索用时 15 毫秒
61.
Olive breeding programmes are focused on selecting for traits as short juvenile period, plant architecture suited for mechanical harvest, or oil characteristics, including fatty acid composition, phenolic, and volatile compounds to suit new markets. Understanding the molecular basis of these characteristics and improving the efficiency of such breeding programmes require the development of genomic information and tools. However, despite its economic relevance, genomic information on olive or closely related species is still scarce. We have applied Sanger and 454 pyrosequencing technologies to generate close to 2 million reads from 12 cDNA libraries obtained from the Picual, Arbequina, and Lechin de Sevilla cultivars and seedlings from a segregating progeny of a Picual × Arbequina cross. The libraries include fruit mesocarp and seeds at three relevant developmental stages, young stems and leaves, active juvenile and adult buds as well as dormant buds, and juvenile and adult roots. The reads were assembled by library or tissue and then assembled together into 81 020 unigenes with an average size of 496 bases. Here, we report their assembly and their functional annotation.  相似文献   
62.
Ligation, the joining of DNA fragments, is a fundamental procedure in molecular cloning and is indispensable to the production of genetically modified organisms that can be used for basic research, the applied biosciences, or both. Given that many genes cooperate in various pathways, incorporating multiple gene cassettes in tandem in a transgenic DNA construct for the purpose of genetic modification is often necessary when generating organisms that produce multiple foreign gene products. Here, we describe a novel method, designated PRESSO (precise sequential DNA ligation on a solid substrate), for the tandem ligation of multiple DNA fragments. We amplified donor DNA fragments with non-palindromic ends, and ligated the fragment to acceptor DNA fragments on solid beads. After the final donor DNA fragments, which included vector sequences, were joined to the construct that contained the array of fragments, the ligation product (the construct) was thereby released from the beads via digestion with a rare-cut meganuclease; the freed linear construct was circularized via an intra-molecular ligation. PRESSO allowed us to rapidly and efficiently join multiple genes in an optimized order and orientation. This method can overcome many technical challenges in functional genomics during the post-sequencing generation.  相似文献   
63.
64.
We review the evidence of how organisms and populations are currently responding to climate change through phenotypic plasticity, genotypic evolution, changes in distribution and, in some cases, local extinction. Organisms alter their gene expression and metabolism to increase the concentrations of several antistress compounds and to change their physiology, phenology, growth and reproduction in response to climate change. Rapid adaptation and microevolution occur at the population level. Together with these phenotypic and genotypic adaptations, the movement of organisms and the turnover of populations can lead to migration toward habitats with better conditions unless hindered by barriers. Both migration and local extinction of populations have occurred. However, many unknowns for all these processes remain. The roles of phenotypic plasticity and genotypic evolution and their possible trade‐offs and links with population structure warrant further research. The application of omic techniques to ecological studies will greatly favor this research. It remains poorly understood how climate change will result in asymmetrical responses of species and how it will interact with other increasing global impacts, such as N eutrophication, changes in environmental N : P ratios and species invasion, among many others. The biogeochemical and biophysical feedbacks on climate of all these changes in vegetation are also poorly understood. We here review the evidence of responses to climate change and discuss the perspectives for increasing our knowledge of the interactions between climate change and life.  相似文献   
65.
Biobanks are collections of human biological tissue used for genomics research. This promises a better understanding of the gene-based contribution to common disease and development of a more personalized approach to healthcare with safer drugs and more effective treatment. However, biobanks are also controversial owing to the ethical, legal, social and political issues raised about their collection and use of biological samples. Therefore, their democratic governance is not only a normative challenge but also an empirical one. This paper is concerned with both challenges: it attempts to “evaluate” processes of democratic governance of genomics by focusing on the case of UK Biobank. The overall argument is that although the UK Biobank performs well in terms of general democratic governance structures, there are epistemological and practical limits to specific democratic governance processes.  相似文献   
66.
67.
The Sorcerer II is the highly mediatized and spectacular Venter Institute's ship that circumnavigated the planet between 2003 and 2006 to collect and classify marine microbial genomes. We analyze Craig Venter's public communication activities and strategies especially focusing on the images of science and scientist he proposes: that of an eighteenth-century “savant” and nineteenth-century naturalist devoted to the exploration of new worlds, and that of the hacker, hero of informational capitalism. Emphasizing his independence from both academy and industry, but building strong alliances with both spheres and with the media, Craig Venter sails the oceans of the contemporary biotechnologies' market, interpreting a specific typology of the relationship between science and society, enterprises, universities.  相似文献   
68.
《Genome biology》2013,14(3):R28

Background

We describe the genome of the western painted turtle, Chrysemys picta bellii, one of the most widespread, abundant, and well-studied turtles. We place the genome into a comparative evolutionary context, and focus on genomic features associated with tooth loss, immune function, longevity, sex differentiation and determination, and the species'' physiological capacities to withstand extreme anoxia and tissue freezing.

Results

Our phylogenetic analyses confirm that turtles are the sister group to living archosaurs, and demonstrate an extraordinarily slow rate of sequence evolution in the painted turtle. The ability of the painted turtle to withstand complete anoxia and partial freezing appears to be associated with common vertebrate gene networks, and we identify candidate genes for future functional analyses. Tooth loss shares a common pattern of pseudogenization and degradation of tooth-specific genes with birds, although the rate of accumulation of mutations is much slower in the painted turtle. Genes associated with sex differentiation generally reflect phylogeny rather than convergence in sex determination functionality. Among gene families that demonstrate exceptional expansions or show signatures of strong natural selection, immune function and musculoskeletal patterning genes are consistently over-represented.

Conclusions

Our comparative genomic analyses indicate that common vertebrate regulatory networks, some of which have analogs in human diseases, are often involved in the western painted turtle''s extraordinary physiological capacities. As these regulatory pathways are analyzed at the functional level, the painted turtle may offer important insights into the management of a number of human health disorders.  相似文献   
69.
This review describes how intimately proteogenomics and system biology are imbricated. Quantitative cell-wide monitoring of cellular processes and the analysis of this information is the basis for systems biology. Establishing the most comprehensive protein-parts list is an essential prerequisite prior to analysis of the cell-wide dynamics of proteins, their post-translational modifications, their complex network interactions and interpretation of these data as a whole. High-quality genome annotation is, thus, a crucial basis. Proteogenomics consists of high-throughput identification and characterization of proteins by extra-large shotgun MS/MS approaches and the integration of these data with genomic data. Discovery of the remaining unannotated genes, defining translational start sites, listing signal peptide processing events and post-translational modifications, are tasks that can currently be carried out at a full-genomic scale as soon as the genomic sequence is available. Proteomics is increasingly being used at the primary stage of genome annotation and such an approach may become standard in the near future for genome projects. Advantageously, the same experimental proteomic datasets may be used to characterize the specific metabolic traits of the organism under study. Undoubtedly, comparative genomics will experience a renaissance taking into account this new dimension. Synthetic biology aimed at re-engineering living systems will also benefit from these significant progresses.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号