首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1847篇
  免费   165篇
  国内免费   145篇
  2157篇
  2024年   4篇
  2023年   41篇
  2022年   56篇
  2021年   98篇
  2020年   63篇
  2019年   67篇
  2018年   68篇
  2017年   54篇
  2016年   82篇
  2015年   83篇
  2014年   143篇
  2013年   172篇
  2012年   128篇
  2011年   70篇
  2010年   58篇
  2009年   85篇
  2008年   65篇
  2007年   75篇
  2006年   95篇
  2005年   67篇
  2004年   88篇
  2003年   90篇
  2002年   69篇
  2001年   40篇
  2000年   43篇
  1999年   30篇
  1998年   34篇
  1997年   28篇
  1996年   30篇
  1995年   12篇
  1994年   22篇
  1993年   10篇
  1992年   11篇
  1991年   11篇
  1990年   12篇
  1989年   5篇
  1988年   13篇
  1987年   9篇
  1986年   4篇
  1985年   8篇
  1984年   8篇
  1983年   1篇
  1982年   3篇
  1979年   2篇
排序方式: 共有2157条查询结果,搜索用时 15 毫秒
991.
目的:建立一种经济、快速且高质量提取人体外周凝血DNA的方法。方法:摸索最佳的匀浆条件,对外周凝血块进行匀浆,采用KI法对匀浆液进行基因组DNA的提取,通过凝胶电泳、单重PCR和多重PCR检测凝血基因组DNA的提取产量和质量,并分别与常规的凝血基因组DNA提取方法,即蛋白酶K消化法,以及提取抗凝血基因组DNA的KI法进行比较分析。结果:最佳的匀浆条件为:39000 rmp,15秒。在此条件下提取的基因组DNA完整性好,纯度和产量与蛋白酶K消化法提取凝血DNA和KI法提取抗凝血DNA的结果相比,没有统计学差异。单重PCR和多重PCR也获得了理想的扩增结果。结论:与常规的外周凝血提取方法相比(蛋白酶K消化法),本方法节省了时间和成本,能快速、经济、有效地提取外周凝血基因组DNA,可用于后续的科研和临床诊断需要,解决了部分科研机构血液基因组DNA的样本来源问题。  相似文献   
992.
Xiong ZY  Tan GX  He GY  He GC  Song YC 《Cell research》2006,16(3):260-266
The genomic structures of Oryza sativa (A genome) and O. meyeriana (G genome) were comparatively studied using bicolor genomic in situ hybridization (GISH). GISH was clearly able to discriminate between the chromosomes of O. sativa and O. meyeriana in the interspecific F1 hybrids without blocking DNA, and co-hybridization was hardly detected. The average mitotic chromosome length of O. meyeriana was found to be 1.69 times that of O. sativa. A comparison of 4,6-diamidino-2-phenylindole staining showed that the chromosomes of O. meyeriana were more extensively labelled, suggesting that the G genome is amplified with more repetitive sequences than the A genome. In interphase nuclei, 9-12 chromocenters were normally detected and nearly all the chromocenters constituted the G genome-specific DNA. More and larger chromocenters formed by chromatin compaction corresponding to the G genome were detected in the hybrid compared with its parents. During pachytene of the F1 hybrid, most chromosomes of A and G did not synapse each other except for 1-2 chromosomes paired at the end of their arms. At meiotic metaphase I, three types of chromosomal associations, i.e.O, sativa-O, sativa (A-A), O. sativa-O, meyeriana (A-G) and O. meyeriana-O, meyeriana (G-G), were observed in the F1 hybrid. The A-G chromosome pairing configurations included bivalents and trivalents. The results provided a foundation toward studying genome organization and evolution of O. meyeriana.  相似文献   
993.
In this study, an industry terminal breeding goal was used in a deterministic simulation, using selection index methodology, to predict genetic gain in a beef population modelled on the UK pedigree Limousin, when using genomic selection (GS) and incorporating phenotype information from novel commercial carcass traits. The effect of genotype–environment interaction was investigated by including the model variations of the genetic correlation between purebred and commercial cross-bred performance (ρX). Three genomic scenarios were considered: (1) genomic breeding values (GBV)+estimated breeding values (EBV) for existing selection traits; (2) GBV for three novel commercial carcass traits+EBV in existing traits; and (3) GBV for novel and existing traits plus EBV for existing traits. Each of the three scenarios was simulated for a range of training population (TP) sizes and with three values of ρX. Scenarios 2 and 3 predicted substantially higher percentage increases over current selection than Scenario 1. A TP of 2000 sires, each with 20 commercial progeny with carcass phenotypes, and assuming a ρX of 0.7, is predicted to increase gain by 40% over current selection in Scenario 3. The percentage increase in gain over current selection increased with decreasing ρX; however, the effect of varying ρX was reduced at high TP sizes for Scenarios 2 and 3. A further non-genomic scenario (4) was considered simulating a conventional population-wide progeny test using EBV only. With 20 commercial cross-bred progenies per sire, similar gain was predicted to Scenario 3 with TP=5000 and ρX=1.0. The range of increases in genetic gain predicted for terminal traits when using GS are of similar magnitude to those observed after the implementation of BLUP technology in the United Kingdom. It is concluded that implementation of GS in a terminal sire breeding goal, using purebred phenotypes alone, will be sub-optimal compared with the inclusion of novel commercial carcass phenotypes in genomic evaluations.  相似文献   
994.
In livestock, many studies have reported the results of imputation to 50k single nucleotide polymorphism (SNP) genotypes for animals that are genotyped with low-density SNP panels. The objective of this paper is to review different measures of correctness of imputation, and to evaluate their utility depending on the purpose of the imputed genotypes. Across studies, imputation accuracy, computed as the correlation between true and imputed genotypes, and imputation error rates, that counts the number of incorrectly imputed alleles, are commonly used measures of imputation correctness. Based on the nature of both measures and results reported in the literature, imputation accuracy appears to be a more useful measure of the correctness of imputation than imputation error rates, because imputation accuracy does not depend on minor allele frequency (MAF), whereas imputation error rate depends on MAF. Therefore imputation accuracy can be better compared across loci with different MAF. Imputation accuracy depends on the ability of identifying the correct haplotype of a SNP, but many other factors have been identified as well, including the number of genotyped immediate ancestors, the number of animals with genotypes at the high-density panel, the SNP density on the low- and high-density panel, the MAF of the imputed SNP and whether imputed SNP are located at the end of a chromosome or not. Some of these factors directly contribute to the linkage disequilibrium between imputed SNP and SNP on the low-density panel. When imputation accuracy is assessed as a predictor for the accuracy of subsequent genomic prediction, we recommend that: (1) individual-specific imputation accuracies should be used that are computed after centring and scaling both true and imputed genotypes; and (2) imputation of gene dosage is preferred over imputation of the most likely genotype, as this increases accuracy and reduces bias of the imputed genotypes and the subsequent genomic predictions.  相似文献   
995.
Reliable selection criteria are required for young riding horses to increase genetic gain by increasing accuracy of selection and decreasing generation intervals. In this study, selection strategies incorporating genomic breeding values (GEBVs) were evaluated. Relevant stages of selection in sport horse breeding programs were analyzed by applying selection index theory. Results in terms of accuracies of indices (rTI) and relative selection response indicated that information on single nucleotide polymorphism (SNP) genotypes considerably increases the accuracy of breeding values estimated for young horses without own or progeny performance. In a first scenario, the correlation between the breeding value estimated from the SNP genotype and the true breeding value (= accuracy of GEBV) was fixed to a relatively low value of rmg = 0.5. For a low heritability trait (h2 = 0.15), and an index for a young horse based only on information from both parents, additional genomic information doubles rTI from 0.27 to 0.54. Including the conventional information source ‘own performance’ into the before mentioned index, additional SNP information increases rTI by 40%. Thus, particularly with regard to traits of low heritability, genomic information can provide a tool for well-founded selection decisions early in life. In a further approach, different sources of breeding values (e.g. GEBV and estimated breeding values (EBVs) from different countries) were combined into an overall index when altering accuracies of EBVs and correlations between traits. In summary, we showed that genomic selection strategies have the potential to contribute to a substantial reduction in generation intervals in horse breeding programs.  相似文献   
996.
997.
X-ray and UVC are the two physical agents that damage DNA directly, with both agents capable of inducing double-strand breaks. Some of our recent work has demonstrated that local exposure to UVC results in a systemic increase in recombination frequency, suggesting that information about exposure can be passed from damaged to non-damaged tissue. Indeed, we recently showed that plants sharing the same enclosed environment with UVC-irradiated plants exhibit similar increase in homologous recombination frequency as irradiated plants. Here, we further tested whether yet another DNA-damaging agent, X-ray, is capable of increasing recombination rate (RR) in neighboring plants grown in a Petri dish. To test this, we grew plants exposed to X-ray or UVC irradiation in an enclosed environment next to non-exposed plants. We found that both X-ray and UVC-irradiated plants and neighboring plants exhibited comparable increases in the levels of strand breaks and the RR. We further showed that pre-exposure of plants to radical scavenger DMSO substantially alleviates the radiation-induced increase in RR and prevents formation of bystander signal. Our results suggest that the increase in RR in bystander plants can also be triggered by X-ray and that radicals may play some role in initiation or maintenance of this signal.  相似文献   
998.
999.
Random amplified polymorphic DNA (RAPD) has been used to investigate the interrelationships of 20 populations of Globodera pallida collected originally from field soils around the UK. RAPD analysis revealed a high level of relative genomic diversity within British G. pallida but there was no general correlation of genomic similarity with geographic distribution. Two populations of pathotype Pa1 were clearly divergent from the bulk of G. pallida and might represent a distinct introduction. Two other populations, from Scotland and Wales, were also dissimilar from each other and from the rest of the G. pallida populations.  相似文献   
1000.
The DNMT1 cytosine methyltransferase enzyme contains a large ∼300-aa intrinsically disordered domain (IDD) that we previously showed regulated DNA methylation patterns in mouse ES cells. Here we generated seven mouse lines with different mutations in the IDD. Homozygous mutant mice of five lines developed normally, with normal levels of methylation on both imprinted and nonimprinted DNA sequences. The other two lines, however, had alterations in imprinted and/or nonimprinted (global) DNA methylation appearing during embryonic development. Embryos of one line expressing a DNMT1 variant containing a 6-aa rat orthologous sequence in the IDD maintained imprinted methylation, showed very reduced levels of global methylation and occasionally completed fetal development. These in vivo studies demonstrate that at least two DNMT1-dependent methylation processes can be distinguished during fetal development. One process maintains the bulk of genomic methylation on nonimprinted sequences. The other process maintains methylation on a much smaller class of sequences including but not limited to gametic differentially methylated domains (gDMDs) that transmit essential imprinted parent-specific methylation for embryonic development.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号