全文获取类型
收费全文 | 5501篇 |
免费 | 616篇 |
国内免费 | 602篇 |
专业分类
6719篇 |
出版年
2024年 | 26篇 |
2023年 | 226篇 |
2022年 | 293篇 |
2021年 | 405篇 |
2020年 | 330篇 |
2019年 | 356篇 |
2018年 | 269篇 |
2017年 | 266篇 |
2016年 | 236篇 |
2015年 | 281篇 |
2014年 | 401篇 |
2013年 | 398篇 |
2012年 | 255篇 |
2011年 | 207篇 |
2010年 | 162篇 |
2009年 | 212篇 |
2008年 | 236篇 |
2007年 | 245篇 |
2006年 | 247篇 |
2005年 | 234篇 |
2004年 | 202篇 |
2003年 | 207篇 |
2002年 | 174篇 |
2001年 | 134篇 |
2000年 | 103篇 |
1999年 | 81篇 |
1998年 | 67篇 |
1997年 | 66篇 |
1996年 | 44篇 |
1995年 | 64篇 |
1994年 | 47篇 |
1993年 | 47篇 |
1992年 | 36篇 |
1991年 | 32篇 |
1990年 | 17篇 |
1989年 | 17篇 |
1988年 | 23篇 |
1987年 | 13篇 |
1986年 | 11篇 |
1985年 | 16篇 |
1984年 | 7篇 |
1983年 | 8篇 |
1982年 | 4篇 |
1981年 | 3篇 |
1980年 | 2篇 |
1979年 | 2篇 |
1978年 | 2篇 |
1977年 | 2篇 |
1950年 | 3篇 |
排序方式: 共有6719条查询结果,搜索用时 15 毫秒
151.
Yuwei Han Weixiong Zhang Botong Zhou Peng Zeng Zunzhe Tian Jing Cai 《Molecular ecology resources》2022,22(1):391-403
Welwitschia mirabilis, which is endemic to the Namib Desert, is the only living species within the family Welwitschiaceae. This species has an extremely long lifespan of up to 2,000 years and bears a single pair of opposite leaves that persist whilst alive. However, the underlying genetic mechanisms and evolution of the species remain poorly elucidated. Here, we report on a chromosome-level genome assembly for W. mirabilis, with a 6.30-Gb genome sequence and contig N50 of 27.50 Mb. In total, 39,019 protein-coding genes were predicted from the genome. Two brassinosteroid-related genes (BRI1 and CYCD3), key regulators of cell division and elongation, were strongly selected in W. mirabilis and may contribute to their long ever-growing leaves. Furthermore, 29 gene families in the mitogen-activated protein kinase signalling pathway showed significant expansion, which may contribute to the desert adaptations of the plant. Three positively selected genes (EHMT1, EIF4E, SOD2) may be involved in the mechanisms leading to long lifespan. Based on molecular clock dating and fossil calibrations, the divergence time of W. mirabilis and Gnetum montanum was estimated at ~123.5 million years ago. Reconstruction of population dynamics from genome data coincided well with the aridification of the Namib Desert. The genome sequence detailed in the current study provides insight into the evolution of W. mirabilis and should be an important resource for further study on gnetophyte and gymnosperm evolution. 相似文献
152.
Linkage and association mapping reveals the genetic basis of brown fibre (Gossypium hirsutum) 总被引:1,自引:0,他引:1 下载免费PDF全文
Tianwang Wen Mi Wu Chao Shen Bin Gao De Zhu Xianlong Zhang Chunyuan You Zhongxu Lin 《Plant biotechnology journal》2018,16(9):1654-1666
Brown fibre cotton is an environmental‐friendly resource that plays a key role in the textile industry. However, the fibre quality and yield of natural brown cotton are poor, and fundamental research on brown cotton is relatively scarce. To understand the genetic basis of brown fibre cotton, we constructed linkage and association populations to systematically examine brown fibre accessions. We fine‐mapped the brown fibre region, Lc1, and dissected it into 2 loci, qBF‐A07‐1 and qBF‐A07‐2. The qBF‐A07‐1 locus mediates the initiation of brown fibre production, whereas the shade of the brown fibre is affected by the interaction between qBF‐A07‐1 and qBF‐A07‐2. Gh_A07G2341 and Gh_A07G0100 were identified as candidate genes for qBF‐A07‐1 and qBF‐A07‐2, respectively. Haploid analysis of the signals significantly associated with these two loci showed that most tetraploid modern brown cotton accessions exhibit the introgression signature of Gossypium barbadense. We identified 10 quantitative trait loci (QTLs) for fibre yield and 19 QTLs for fibre quality through a genome‐wide association study (GWAS) and found that qBF‐A07‐2 negatively affects fibre yield and quality through an epistatic interaction with qBF‐A07‐1. This study sheds light on the genetics of fibre colour and lint‐related traits in brown fibre cotton, which will guide the elite cultivars breeding of brown fibre cotton. 相似文献
153.
Genome physical mapping with large-insert clones by fingerprint analysis is becoming an active area of genomics research. Here, we report two new capillary electrophoresis-based fingerprinting methods for genome physical mapping and the effects of different fingerprinting methods and source clone genome coverage on quality physical map construction revealed by computer simulations and laboratory experiments. It was shown that the manual sequencing gel-based two-enzyme fingerprinting method consistently generated larger and more accurate contigs, followed by the new capillary electrophoresis-based three-enzyme method, the new capillary electrophoresis-based five-enzyme (SNaPshot) method, the agarose gel-based one-enzyme method, and the automatic sequencing gel-based four-enzyme method, in descending order, when 1% or fewer questionable clones were allowed. Analysis of clones equivalent to 5x, 8x, 10x, and 15x genomes using the fingerprinting methods revealed that as the number of clones increased from 5x to 10x, the contig length rapidly increased for all methods. However, when the number of clones was increased from 10x to 15x coverage, the contig length at best increased at a lower rate or even decreased. The results will provide useful knowledge and strategies for effective construction of quality genome physical maps for advanced genomics research. 相似文献
154.
High efficient multisites genome editing in allotetraploid cotton (Gossypium hirsutum) using CRISPR/Cas9 system 总被引:1,自引:0,他引:1 下载免费PDF全文
Pengcheng Wang Jun Zhang Lin Sun Yizan Ma Jiao Xu Sijia Liang Jinwu Deng Jiafu Tan Qinghua Zhang Lili Tu Henry Daniell Shuangxia Jin Xianlong Zhang 《Plant biotechnology journal》2018,16(1):137-150
Gossypium hirsutum is an allotetraploid with a complex genome. Most genes have multiple copies that belong to At and Dt subgenomes. Sequence similarity is also very high between gene homologues. To efficiently achieve site/gene‐specific mutation is quite needed. Due to its high efficiency and robustness, the CRISPR (clustered regularly interspaced short palindromic repeats)/Cas9 system has exerted broad site‐specific genome editing from prokaryotes to eukaryotes. In this study, we utilized a CRISPR/Cas9 system to generate two sgRNAs in a single vector to conduct multiple sites genome editing in allotetraploid cotton. An exogenously transformed gene Discosoma red fluorescent protein2(DsRed2) and an endogenous gene GhCLA1 were chosen as targets. The DsRed2‐edited plants in T0 generation reverted its traits to wild type, with vanished red fluorescence the whole plants. Besides, the mutated phenotype and genotype were inherited to their T1 progenies. For the endogenous gene GhCLA1, 75% of regenerated plants exhibited albino phenotype with obvious nucleotides and DNA fragments deletion. The efficiency of gene editing at each target site is 66.7–100%. The mutation genotype was checked for both genes with Sanger sequencing. Barcode‐based high‐throughput sequencing, which could be highly efficient for genotyping to a population of mutants, was conducted in GhCLA1‐edited T0 plants and it matched well with Sanger sequencing results. No off‐target editing was detected at the potential off‐target sites. These results prove that the CRISPR/Cas9 system is highly efficient and reliable for allotetraploid cotton genome editing. 相似文献
155.
Haijiang Liu Jingchi Wang Bingbing Zhang Xinyu Yang John P Hammond Guangda Ding Sheliang Wang Hongmei Cai Chuang Wang Fangsen Xu Lei Shi 《Annals of botany》2021,128(7):919
Background and AimsOilseed rape (Brassica napus) is one of the most important oil crops worldwide. Phosphorus (P) deficiency severely decreases the plant height and branch number of B. napus. However, the genetic bases controlling plant height and branch number in B. napus under P deficiency remain largely unknown. This study aims to mine candidate genes for plant height and branch number by genome-wide association study (GWAS) and determine low-P-tolerance haplotypes.MethodsAn association panel of B. napus was grown in the field with a low P supply (P, 0 kg ha−1) and a sufficient P supply (P, 40 kg ha−1) across 2 years and plant height and branch number were investigated. More than five million single-nucleotide polymorphisms (SNPs) were used to conduct GWAS of plant height and branch number at two contrasting P supplies.Key ResultsA total of 2127 SNPs were strongly associated (P < 6·25 × 10−07) with plant height and branch number at two P supplies. There was significant correlation between phenotypic variation and the number of favourable alleles of associated loci on chromosomes A10 (chrA10_821671) and C08 (chrC08_27999846), which will contribute to breeding improvement by aggregating these SNPs. BnaA10g09290D and BnaC08g26640D were identified to be associated with chrA10_821671 and chrC08_27999846, respectively. Candidate gene association analysis and haplotype analysis showed that the inbred lines carrying ATT at BnaA10g09290Hap1 and AAT at BnaC08g26640Hap1 had greater plant height than lines carrying other haplotype alleles at low P supply.ConclusionOur results demonstrate the power of GWAS in identifying genes of interest in B. napus and provided insights into the genetic basis of plant height and branch number at low P supply in B. napus. Candidate genes and favourable haplotypes may facilitate marker-based breeding efforts aimed at improving P use efficiency in B. napus. 相似文献
156.
Cultivated rice (Oryza sativa) is an AA genome Oryza species that was most likely domesticated from wild populations of O. rufipogon in Asia. O. rufipogon and O. meridionalis are the only AA genome species found within Australia and occur as widespread populations across northern Australia. The chloroplast genome sequence of O. rufipogon from Asia and Australia and O. meridionalis and O. australiensis (an Australian member of the genus very distant from O. sativa) was obtained by massively parallel sequencing and compared with the chloroplast genome sequence of domesticated O. sativa. Oryza australiensis differed in more than 850 sites single nucleotide polymorphism or indel from each of the other samples. The other wild rice species had only around 100 differences relative to cultivated rice. The chloroplast genomes of Australian O. rufipogon and O. meridionalis were closely related with only 32 differences. The Asian O. rufipogon chloroplast genome (with only 68 differences) was closer to O. sativa than the Australian taxa (both with more than 100 differences). The chloroplast sequences emphasize the genetic distinctness of the Australian populations and their potential as a source of novel rice germplasm. The Australian O. rufipogon may be a perennial form of O. meridionalis. 相似文献
157.
Cheng Dan Jie Mei Da Wang Jian-Fang Gui 《International journal of biological sciences》2013,9(10):1043-1049
Pf62-Y and Pf62-X is a pair of allelic Y chromosome-linked and X chromosome-linked markers, and have been used to identify YY super-males, XY males and XX females for commercial production of all-male populations in yellow catfish (Pelteobagrus fulvidraco). However, the SCAR primers used previously have only two nucleotide difference, which restricts the wide utility because of nucleotide polymorphism. In this study, a continuous 8102 bp Pf62-Y sequence and a 5362 bp Pf62-X sequence have been cloned by genome walking, and significant genetic differentiation has been revealed between the corresponding X and Y chromosome allele sequences. Moreover, three pairs of primers were designed to efficiently identify YY super-males, XY males and XX females in an artificial breeding population, and to distinguish XY males and XX females in various wild populations. Together, the three new sex-specific genetic markers develop a highly stable and efficient method for genetic sex identification and sex control application in sustainable aquaculture of all-male yellow catfish. 相似文献
158.
Closely related species of Drosophila tend to have similar genome sizes. The strong imbalance in favor of small deletions relative to insertions implies that the unconstrained DNA in Drosophila is unlikely to be passively inherited from even closely related ancestors, and yet most DNA in Drosophila genomes is intergenic and potentially unconstrained. In an attempt to investigate the maintenance of this intergenic DNA, we studied the evolution of an intergenic locus on the fourth chromosome of the Drosophila melanogaster genome. This 1.2-kb locus is marked by two distinct, large insertion events: a nuclear transposition of a mitochondrial sequence and a transposition of a nonautonomous DNA transposon DNAREP1_DM. Because we could trace the evolutionary histories of these sequences, we were able to reconstruct the length evolution of this region in some detail. We sequenced this locus in all four species of the D. melanogaster species complex: D. melanogaster, D. simulans, D. sechellia, and D. mauritiana. Although this locus is similar in size in these four species, less than 10% of the sequence from the most recent common ancestor remains in D. melanogaster and all of its sister species. This region appears to have increased in size through several distinct insertions in the ancestor of the D. melanogaster species complex and has been shrinking since the split of these lineages. In addition, we found no evidence suggesting that the size of this locus has been maintained over evolutionary time; these results are consistent with the model of a dynamic equilibrium between persistent DNA loss through small deletions and more sporadic DNA gain through less frequent but longer insertions. The apparent stability of genome size in Drosophila may belie very rapid sequence turnover at intergenic loci. 相似文献
159.
160.