首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   28523篇
  免费   3045篇
  国内免费   3898篇
  2024年   164篇
  2023年   848篇
  2022年   988篇
  2021年   1315篇
  2020年   1338篇
  2019年   1526篇
  2018年   1271篇
  2017年   1374篇
  2016年   1317篇
  2015年   1321篇
  2014年   1640篇
  2013年   2194篇
  2012年   1274篇
  2011年   1421篇
  2010年   1203篇
  2009年   1481篇
  2008年   1588篇
  2007年   1535篇
  2006年   1449篇
  2005年   1216篇
  2004年   1089篇
  2003年   1016篇
  2002年   827篇
  2001年   701篇
  2000年   686篇
  1999年   575篇
  1998年   458篇
  1997年   410篇
  1996年   335篇
  1995年   338篇
  1994年   323篇
  1993年   272篇
  1992年   236篇
  1991年   244篇
  1990年   180篇
  1989年   157篇
  1988年   136篇
  1987年   135篇
  1986年   132篇
  1985年   98篇
  1984年   105篇
  1983年   80篇
  1982年   118篇
  1981年   74篇
  1980年   80篇
  1979年   49篇
  1978年   43篇
  1977年   21篇
  1976年   25篇
  1975年   17篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Missense mutations of the RET gene have been identified in both multiple endocrine neoplasia (MEN) type 2A/B and Hirschsprung disease (HSCR: congenital absence of the enteric nervous system, ENS). Current consensus holds that MEN2A/B and HSCR are caused by activating and inactivating RET mutations, respectively. However, the biological significance of RET missense mutations in vivo has not been fully elucidated. In the present study, we introduced one MEN2B-associated (M918T) and two HSCR-associated (N394K and Y791F) RET missense mutations into the corresponding regions of the mouse Ret gene by genome editing (RetM919T, RetN396K and RetY792F) and performed histological examinations of Ret-expressing tissues to understand the pathogenetic impact of each mutant in vivo. RetM919T/+ mice displayed MEN2B-related phenotypes, including C-cell hyperplasia and abnormal enlargement of the primary sympathetic ganglia. Similar sympathetic phenotype was observed in RetM919T/- mice, demonstrating a strong pathogenetic effect of the Ret M918T by a single-allele expression. In contrast, no abnormality was found in the ENS of mice harboring the Ret N394K or Y791F mutation. Most surprisingly, single-allele expression of RET N394K or Y791F was sufficient for normal ENS development, indicating that these RET mutants exert largely physiological function in vivo. This study reveals contrasting pathogenetic effects between MEN2B- and HSCR-associated RET missense mutations, and suggests that some of HSCR-associated RET missense mutations are by themselves neither inactivating nor pathogenetic and require involvement of other gene mutations for disease expressivity.  相似文献   
992.
Empirical studies have documented both positive and negative density-dependent dispersal, yet most theoretical models predict positive density dependence as a mechanism to avoid competition. Several hypotheses have been proposed to explain the occurrence of negative density-dependent dispersal, but few of these have been formally modeled. Here, we developed an individual-based model of the evolution of density-dependent dispersal. This model is novel in that it considers the effects of density on dispersal directly, and indirectly through effects on individual condition. Body condition is determined mechanistically, by having juveniles compete for resources in their natal patch. We found that the evolved dispersal strategy was a steep, increasing function of both density and condition. Interestingly, although populations evolved a positive density-dependent dispersal strategy, the simulated metapopulations exhibited negative density-dependent dispersal. This occurred because of the negative relationship between density and body condition: high density sites produced low-condition individuals that lacked the resources required for dispersal. Our model, therefore, generates the novel hypothesis that observed negative density-dependent dispersal can occur when high density limits the ability of organisms to disperse. We suggest that future studies consider how phenotype is linked to the environment when investigating the evolution of dispersal.  相似文献   
993.
The establishment of a population into a new empty habitat outside of its initial niche is a phenomenon akin to evolutionary rescue in the presence of immigration. It underlies a wide range of processes, such as biological invasions by alien organisms, host shifts in pathogens, or the emergence of resistance to pesticides or antibiotics from untreated areas. We derive an analytically tractable framework to describe the evolutionary and demographic dynamics of asexual populations in a source-sink system. We analyze the influence of several factors on the establishment success in the sink, and on the time until establishment. To this aim, we use a classic phenotype-fitness landscape (Fisher's geometrical model in n dimensions) where the source and sink habitats have different phenotypic optima. In case of successful establishment, the mean fitness in the sink follows a typical four-phases trajectory. The waiting time to establishment is independent of the immigration rate and has a “U-shaped” dependence on the mutation rate, until some threshold where lethal mutagenesis impedes establishment and the sink population remains so. We use these results to get some insight into possible effects of several management strategies.  相似文献   
994.
When divergent populations form hybrids, hybrid fitness can vary with genome composition, current environmental conditions, and the divergence history of the populations. We develop analytical predictions for hybrid fitness, which incorporate all three factors. The predictions are based on Fisher's geometric model, and apply to a wide range of population genetic parameter regimes and divergence conditions, including allopatry and parapatry, local adaptation, and drift. Results show that hybrid fitness can be decomposed into intrinsic effects of admixture and heterozygosity, and extrinsic effects of the (local) adaptedness of the parental lines. Effect sizes are determined by a handful of geometric distances, which have a simple biological interpretation. These distances also reflect the mode and amount of divergence, such that there is convergence toward a characteristic pattern of intrinsic isolation. We next connect our results to the quantitative genetics of line crosses in variable or patchy environments. This means that the geometrical distances can be estimated from cross data, and provides a simple interpretation of the “composite effects.” Finally, we develop extensions to the model, involving selectively induced disequilibria, and variable phenotypic dominance. The geometry of fitness landscapes provides a unifying framework for understanding speciation, and wider patterns of hybrid fitness.  相似文献   
995.
Since Emaraviruses have been discovered in 2007 several new species were detected in a range of host plants. Five genome segments of a novel Emaravirus from mosaic-diseased Eurasian aspen (Populus tremula) have been completely determined. The monocistronic, segmented ssRNA genome of the virus shows a genome organisation typical for Emaraviruses encoding the viral RNA-dependent RNA polymerase (RdRP, 268.2 kDa) on RNA1 (7.1 kb), a glycoprotein precursor (GPP, 73.5 kDa) on RNA2 (2.3 kb), the viral nucleocapsid protein (N, 35.6 kDa) on RNA3 (1.6 kb), and a putative movement protein (MP, 41.0 kDa) on RNA4 (1.6 kb). The fifth identified genome segment (RNA5, 1.3 kb) encodes a protein of unknown function (P28, 28.1 kDa). We discovered that it is distantly related to proteins encoded by Emaraviruses, such as P4 of European mountain ash ringspot-associated virus. All proteins from this group contain a central hydrophobic region with a conserved secondary structure and a hydrophobic amino acid stretch, bordered by two highly conserved positions, thus clearly representing a new group of homologues of Emaraviruses. The virus identified in Eurasian aspen is closely associated with observed leaf symptoms, such as mottle, yellow blotching, variegation and chloroses along veins. All five viral RNAs were regularly detectable by RT-PCR in mosaic-diseased P. tremula in Norway, Finland and Sweden (Fennoscandia). Observed symptoms and testing of mosaic-diseased Eurasian aspen by virus-specific RT-PCR targeting RNA3 and RNA4 confirmed a wide geographic distribution of the virus in Fennoscandia. We could demonstrate that the mosaic-disease is graft-transmissible and confirmed that the virus is the causal agent by detection in symptomatic, graft-inoculated seedlings used as rootstocks as well as in the virus-infected scions used for graft-inoculation. Owing to these characteristics, the virus represents a novel species within the genus Emaravirus and was tentatively denominated aspen mosaic-associated virus.  相似文献   
996.
In the initial step of sugar metabolism, sugar-specific transporters play a decisive role in the passage of sugars through plasma membranes into cytoplasm. The SecY complex (SecYEG) in bacteria forms a membrane channel responsible for protein translocation. The present work shows that permeabilized SecY channels can be used as nonspecific sugar transporters in Escherichia coli. SecY with the plug domain deleted allowed the passage of glucose, fructose, mannose, xylose, and arabinose, and, with additional pore-ring mutations, facilitated lactose transport, indicating that sugar passage via permeabilized SecY was independent of sugar stereospecificity. The engineered E. coli showed rapid growth on a wide spectrum of monosaccharides and benefited from the elimination of transport saturation, improvement in sugar tolerance, reduction in competitive inhibition, and prevention of carbon catabolite repression, which are usually encountered with native sugar uptake systems. The SecY channel is widespread in prokaryotes, so other bacteria may also be engineered to utilize this system for sugar uptake. The SecY channel thus provides a unique sugar passageway for future development of robust cell factories for biotechnological applications.  相似文献   
997.
Mathematical modeling of animal cell growth and metabolism is essential for the understanding and improvement of the production of biopharmaceuticals. Models can explain the dynamic behavior of cell growth and product formation, support the identification of the most relevant parameters for process design, and significantly reduce the number of experiments to be performed for process optimization. Few dynamic models have been established that describe both extracellular and intracellular dynamics of growth and metabolism of animal cells. In this study, a model was developed, which comprises a set of 33 ordinary differential equations to describe batch cultivations of suspension AGE1.HN.AAT cells considered for the production of α1-antitrypsin. This model combines a segregated cell growth model with a structured model of intracellular metabolism. Overall, it considers the viable cell concentration, mean cell diameter, viable cell volume, concentration of extracellular substrates, and intracellular concentrations of key metabolites from the central carbon metabolism. Furthermore, the release of metabolic by-products such as lactate and ammonium was estimated directly from the intracellular reactions. Based on the same set of parameters, this model simulates well the dynamics of four independent batch cultivations. Analysis of the simulated intracellular rates revealed at least two distinct cellular physiological states. The first physiological state was characterized by a high glycolytic rate and high lactate production. Whereas the second state was characterized by efficient adenosine triphosphate production, a low glycolytic rate, and reactions of the TCA cycle running in the reverse direction from α-ketoglutarate to citrate. Finally, we show possible applications of the model for cell line engineering and media optimization with two case studies.  相似文献   
998.
Microbial cell factories have been extensively engineered to produce free fatty acids (FFAs) as key components of crucial nutrients, soaps, industrial chemicals, and fuels. However, our ability to control the composition of microbially synthesized FFAs is still limited, particularly, for producing medium-chain fatty acids (MCFAs). This is mainly due to the lack of high-throughput approaches for FFA analysis to engineer enzymes with desirable product specificity. Here we report a mass spectrometry (MS)-based method for rapid profiling of MCFAs in Saccharomyces cerevisiae by using membrane lipids as a proxy. In particular, matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) MS was used to detect shorter acyl chain phosphatidylcholines from membrane lipids and a higher m/z peak ratio at 730 and 758 was used as an indication for improved MCFA production. This colony-based method can be performed at a rate of ~2 s per sample, representing a substantial improvement over gas chromatography-MS (typically >30 min per sample) as the gold standard method for FFA detection. To demonstrate the power of this method, we performed site-saturation mutagenesis of the yeast fatty acid synthase and identified nine missense mutations that resulted in improved MCFA production relative to the wild-type strain. Colony-based MALDI-ToF MS screening provides an effective approach for engineering microbial fatty acid compositions in a high-throughput manner.  相似文献   
999.
Lactic acid is widely used in many industries, especially in the production of poly-lactic acid. Bacillus coagulans is a promising lactic acid producer in industrial fermentation due to its thermophilic property. In this study, we developed the first genome-scale metabolic model (GEM) of B. coagulans iBag597, together with an enzyme-constrained model ec-iBag597. We measured strain-specific biomass composition and integrated the data into a biomass equation. Then, we validated iBag597 against experimental data generated in this study, including amino acid requirements and carbon source utilization, showing that simulations were generally consistent with the experimental results. Subsequently, we carried out chemostats to investigate the effects of specific growth rate and culture pH on metabolism of B. coagulans. Meanwhile, we used iBag597 to estimate the intracellular metabolic fluxes for those conditions. The results showed that B. coagulans was capable of generating ATP via multiple pathways, and switched among them in response to various conditions. With ec-iBag597, we estimated the protein cost and protein efficiency for each ATP-producing pathway to investigate the switches. Our models pave the way for systems biology of B. coagulans, and our findings suggest that maintaining a proper growth rate and selecting an optimal pH are beneficial for lactate fermentation.  相似文献   
1000.
Disturbance of wildlife is a potential cause of conservation concern, not least to overwintering waders Charadrii inhabiting estuaries close to conurbations where human recreational and economic activities are often concentrated. Disturbance from people on and alongside intertidal foraging areas could make it more difficult for birds to survive until spring in good condition by reducing the time available for foraging, increasing energy requirements and displacing birds to poorer foraging areas. We adopted a two-part approach to testing whether such significant impacts occurred in a Special Protection Area where disturbance risk was high because of its small size and close proximity to conurbations. In part one, we recorded over the whole estuary during stages of the tidal cycle when part or all of the intertidal zone was exposed and so accessible to waders (i.e. on receding, low and advancing tides): (1) the numbers and activities of people on the intertidal flats and on the adjacent land in those places where people were visible to waders in the intertidal zone and (2) the numbers of waders present and disturbed into flight, the flight distance and flight duration in the ‘overlap’ areas where people did disturb waders. People occurred on < 25% of the 938 ha of intertidal flats, but most waders foraged on mudflats, whereas most people were on sandflats. People on land were visible to foraging waders along < 35% of the 16.5 km of shoreline. Waders and people were therefore substantially separated in space. Within overlap areas, people and waders were often frequently separated in time: for example, people on land mostly disturbed waders when only the upper shore levels were exposed. The average overwintering wader spent < 0.1% of its foraging time during daylight flying away from people and the additional energy expenditure was equivalent to < 0.02% of its daily requirements. The comparison made in part two between our study area and two comparable estuaries showed that the number of visits each day to the overlap areas would need to be 29 or 43 times greater for disturbance to have lowered the birds’ body condition and winter survival. Both parts of the study therefore suggested strongly that the amount of disturbance was too trivial to have a significant impact on waders. It is concluded that: (1) to properly assess disturbance risk to waders, both extensive and intensive observations must be made on the behaviour of people and birds to quantify the extent to which they overlap in space and time, and (2) it should not be assumed that an estuary's close proximity to conurbations, and the presence of large numbers of people in the vicinity of the SPA, necessarily implies a significant disturbance risk to waders.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号