首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6005篇
  免费   764篇
  国内免费   184篇
  2024年   5篇
  2023年   154篇
  2022年   127篇
  2021年   212篇
  2020年   280篇
  2019年   376篇
  2018年   301篇
  2017年   335篇
  2016年   324篇
  2015年   285篇
  2014年   307篇
  2013年   550篇
  2012年   210篇
  2011年   331篇
  2010年   220篇
  2009年   354篇
  2008年   373篇
  2007年   326篇
  2006年   297篇
  2005年   203篇
  2004年   244篇
  2003年   175篇
  2002年   126篇
  2001年   123篇
  2000年   88篇
  1999年   77篇
  1998年   91篇
  1997年   67篇
  1996年   63篇
  1995年   59篇
  1994年   46篇
  1993年   62篇
  1992年   51篇
  1991年   22篇
  1990年   13篇
  1989年   7篇
  1988年   7篇
  1987年   7篇
  1986年   8篇
  1985年   7篇
  1984年   6篇
  1983年   7篇
  1982年   7篇
  1981年   6篇
  1980年   1篇
  1979年   7篇
  1978年   4篇
  1972年   1篇
  1971年   1篇
排序方式: 共有6953条查询结果,搜索用时 15 毫秒
951.
Extirpated organisms are reintroduced into their former ranges worldwide to combat species declines and biodiversity losses. The growing field of reintroduction biology provides guiding principles for reestablishing populations, though criticisms remain regarding limited integration of initial planning, modeling frameworks, interdisciplinary collaborations, and multispecies approaches. We used an interdisciplinary, multispecies, quantitative framework to plan reintroductions of three fish species into Abrams Creek, Great Smoky Mountains National Park, USA. We first assessed the appropriateness of habitat at reintroduction sites for banded sculpin (Cottus carolinae), greenside darter (Etheostoma blennioides), and mottled sculpin (Cottus bairdii) using species distribution modeling. Next, we evaluated the relative suitability of nine potential source stock sites using population genomics, abundance estimates, and multiple‐criteria decision analysis (MCDA) based on known correlates of reintroduction success. Species distribution modeling identified mottled sculpin as a poor candidate, but banded sculpin and greenside darter as suitable candidates for reintroduction based on species‐habitat relationships and habitats available in Abrams Creek. Genotyping by sequencing revealed acceptable levels of genetic diversity at all candidate source stock sites, identified population clusters, and allowed for estimating the number of fish that should be included in translocations. Finally, MCDA highlighted priorities among candidate source stock sites that were most likely to yield successful reintroductions based on differential weightings of habitat assessment, population genomics, and the number of fish available for translocation. Our integrative approach represents a unification of multiple recent advancements in the field of reintroduction biology and highlights the benefit of shifting away from simply choosing nearby populations for translocation to an information‐based science with strong a priori planning coupled with several suggested posteriori monitoring objectives. Our framework can be applied to optimize reintroduction successes for a multitude of organisms and advances in the science of reintroduction biology by simultaneously addressing a variety of past criticisms of the field.  相似文献   
952.
Elevated atmospheric CO2 concentrations ([CO2]) are expected to increase C3 crop yield through the CO2 fertilization effect (CFE) by stimulating photosynthesis and by reducing stomatal conductance and transpiration. The latter effect is widely believed to lead to greater benefits in dry rather than wet conditions, although some recent experimental evidence challenges this view. Here we used a process‐based crop model, the Agricultural Production Systems sIMulator (APSIM), to quantify the contemporary and future CFE on soybean in one of its primary production area of the US Midwest. APSIM accurately reproduced experimental data from the Soybean Free‐Air CO2 Enrichment site showing that the CFE declined with increasing drought stress. This resulted from greater radiation use efficiency (RUE) and above‐ground biomass production at elevated [CO2] that outpaced gains in transpiration efficiency (TE). Using an ensemble of eight climate model projections, we found that drought frequency in the US Midwest is projected to increase from once every 5 years currently to once every other year by 2050. In addition to directly driving yield loss, greater drought also significantly limited the benefit from rising [CO2]. This study provides a link between localized experiments and regional‐scale modeling to highlight that increased drought frequency and severity pose a formidable challenge to maintaining soybean yield progress that is not offset by rising [CO2] as previously anticipated. Evaluating the relative sensitivity of RUE and TE to elevated [CO2] will be an important target for future modeling and experimental studies of climate change impacts and adaptation in C3 crops.  相似文献   
953.
Future climates are projected to be highly novel relative to recent climates. Climate novelty challenges models that correlate ecological patterns to climate variables and then use these relationships to forecast ecological responses to future climate change. Here, we quantify the magnitude and ecological significance of future climate novelty by comparing it to novel climates over the past 21,000 years in North America. We then use relationships between model performance and climate novelty derived from the fossil pollen record from eastern North America to estimate the expected decrease in predictive skill of ecological forecasting models as future climate novelty increases. We show that, in the high emissions scenario (RCP 8.5) and by late 21st century, future climate novelty is similar to or higher than peak levels of climate novelty over the last 21,000 years. The accuracy of ecological forecasting models is projected to decline steadily over the coming decades in response to increasing climate novelty, although models that incorporate co‐occurrences among species may retain somewhat higher predictive skill. In addition to quantifying future climate novelty in the context of late Quaternary climate change, this work underscores the challenges of making reliable forecasts to an increasingly novel future, while highlighting the need to assess potential avenues for improvement, such as increased reliance on geological analogs for future novel climates and improving existing models by pooling data through time and incorporating assemblage‐level information.  相似文献   
954.
Although climate warming is affecting most marine ecosystems, the Mediterranean is showing earlier impacts. Foundation seagrasses are already experiencing a well‐documented regression in the Mediterranean which could be aggravated by climate change. Here, we forecast distributions of two seagrasses and contrast predicted loss with discrete regions identified on the basis of extant genetic diversity. Under the worst‐case scenario, Posidonia oceanica might lose 75% of suitable habitat by 2050 and is at risk of functional extinction by 2100, whereas Cymodocea nodosa would lose only 46.5% in that scenario as losses are compensated with gained and stable areas in the Atlantic. Besides, we predict that erosion of present genetic diversity and vicariant processes can happen, as all Mediterranean genetic regions could decrease considerably in extension in future warming scenarios. The functional extinction of Posidonia oceanica would have important ecological impacts and may also lead to the release of the massive carbon stocks these ecosystems stored over millennia.  相似文献   
955.
Protected areas (PAs) cover about 22% of the conterminous United States. Understanding their role on historical land use and land cover change (LULCC) and on the carbon cycle is essential to provide guidance for environmental policies. In this study, we compiled historical LULCC and PAs data to explore these interactions within the terrestrial ecosystem model (TEM). We found that intensive LULCC occurred in the conterminous United States from 1700 to 2005. More than 3 million km2 of forest, grassland and shrublands were converted into agricultural lands, which caused 10,607 Tg C release from land ecosystems to atmosphere. PAs had experienced little LULCC as they were generally established in the 20th century after most of the agricultural expansion had occurred. PAs initially acted as a carbon source due to land use legacies, but their accumulated carbon budget switched to a carbon sink in the 1960s, sequestering an estimated 1,642 Tg C over 1700–2005, or 13.4% of carbon losses in non‐PAs. We also find that PAs maintain larger carbon stocks and continue sequestering carbon in recent years (2001–2005), but at a lower rate due to increased heterotrophic respiration as well as lower productivity associated to aging ecosystems. It is essential to continue efforts to maintain resilient, biodiverse ecosystems and avoid large‐scale disturbances that would release large amounts of carbon in PAs.  相似文献   
956.
Climate change represents a primary threat to species persistence and biodiversity at a global scale. Cold adapted alpine species are especially sensitive to climate change and can offer key “early warning signs” about deleterious effects of predicted change. Among mountain ungulates, survival, a key determinant of demographic performance, may be influenced by future climate in complex, and possibly opposing ways. Demographic data collected from 447 mountain goats in 10 coastal Alaska, USA, populations over a 37‐year time span indicated that survival is highest during low snowfall winters and cool summers. However, general circulation models (GCMs) predict future increase in summer temperature and decline in winter snowfall. To disentangle how these opposing climate‐driven effects influence mountain goat populations, we developed an age‐structured population model to project mountain goat population trajectories for 10 different GCM/emissions scenarios relevant for coastal Alaska. Projected increases in summer temperature had stronger negative effects on population trajectories than the positive demographic effects of reduced winter snowfall. In 5 of the 10 GCM/representative concentration pathway (RCP) scenarios, the net effect of projected climate change was extinction over a 70‐year time window (2015–2085); smaller initial populations were more likely to go extinct faster than larger populations. Using a resource selection modeling approach, we determined that distributional shifts to higher elevation (i.e., “thermoneutral”) summer range was unlikely to be a viable behavioral adaptation strategy; due to the conical shape of mountains, summer range was expected to decline by 17%–86% for 7 of the 10 GCM/RCP scenarios. Projected declines of mountain goat populations are driven by climate‐linked bottom‐up mechanisms and may have wide ranging implications for alpine ecosystems. These analyses elucidate how projected climate change can negatively alter population dynamics of a sentinel alpine species and provide insight into how demographic modeling can be used to assess risk to species persistence.  相似文献   
957.
Detecting all species in a given survey is challenging, regardless of sampling effort. This issue, more commonly known as imperfect detection, can have negative impacts on data quality and interpretation, most notably leading to false absences for rare or difficult‐to‐detect species. It is important that this issue be addressed, as estimates of species richness are critical to many areas of ecological research and management. In this study, we set out to determine the impacts of imperfect detection, and decisions about thresholds for inclusion in occupancy, on estimates of species richness and community structure. We collected data from a stream fish assemblage in Algonquin Provincial Park to be used as a representation of ecological communities. We then used multispecies occupancy modeling to estimate species‐specific occurrence probabilities while accounting for imperfect detection, thus creating a more informed dataset. This dataset was then compared to the original to see where differences occurred. In our analyses, we demonstrated that imperfect detection can lead to large changes in estimates of species richness at the site level and summarized differences in the community structure and sampling locations, represented through correspondence analyses.  相似文献   
958.
Forest canopies and tree crown structures are of high ecological importance. Measuring canopies and crowns by direct inventory methods is time‐consuming and of limited accuracy. High‐resolution inventory tools, in particular terrestrial laser scanning (TLS), is able to overcome these limitations and obtain three‐dimensional (3D) structural information about the canopy with a very high level of detail. The main objective of this study was to introduce a novel method to analyze spatiotemporal dynamics in canopy occupancy at the individual tree and local neighborhood level using high‐resolution 3D TLS data. For the analyses, a voxel grid approach was applied. The tree crowns were modeled through the combination of two approaches: the encasement of all crown points with a 3D α‐shape, which was then converted into a voxel grid, and the direct voxelization of the crown points. We show that canopy occupancy at individual tree level can be quantified as the crown volume occupied only by the respective tree or shared with neighboring trees. At the local neighborhood level, our method enables the precise determination of the extent of canopy space filling, the identification of tree–tree interactions, and the analysis of complementary space use. Using multitemporal TLS data recordings, this method allows the precise detection and quantification of changes in canopy occupancy through time. The method is applicable to a wide range of investigations in forest ecology research, including the study of tree diversity effects on forest productivity or growing space analyses for optimal tree growth. Due to the high accuracy of this novel method, it facilitates the precise analyses even of highly plastic individual tree crowns and, thus, the realistic representation of forest canopies. Moreover, our voxel grid framework is flexible enough to allow for the inclusion of further biotic and abiotic variables relevant to complex analyses of forest canopy dynamics.  相似文献   
959.
There is a potential problem in present quantitative genetics evolutionary modeling based on reaction norms. Such models are state‐space models, where the multivariate breeder's equation in some form is used as the state equation that propagates the population state forward in time. These models use the implicit assumption of a constant reference environment, in many cases set to zero. This zero‐point is often the environment a population is adapted to, that is, where the expected geometric mean fitness is maximized. Such environmental reference values follow from the state of the population system, and they are thus population properties. The environment the population is adapted to, is, in other words, an internal population property, independent of the external environment. It is only when the external environment coincides with the internal reference environment, or vice versa, that the population is adapted to the current environment. This is formally a result of state‐space modeling theory, which is an important theoretical basis for evolutionary modeling. The potential zero‐point problem is present in all types of reaction norm models, parametrized as well as function‐valued, and the problem does not disappear when the reference environment is set to zero. As the environmental reference values are population characteristics, they ought to be modeled as such. Whether such characteristics are evolvable is an open question, but considering the complexity of evolutionary processes, such evolvability cannot be excluded without good arguments. As a straightforward solution, I propose to model the reference values as evolvable mean traits in their own right, in addition to other reaction norm traits. However, solutions based on an evolvable G matrix are also possible.  相似文献   
960.
Due to its fundamental role in shaping host selection behavior, we have analyzed the chemosensory repertoire of Chrysomela lapponica. This specialized leaf beetle evolved distinct populations which shifted from the ancestral host plant, willow (Salix sp., Salicaceae), to birch (Betula rotundifolia, Betulaceae). We identified 114 chemosensory candidate genes in adult C. lapponica: 41 olfactory receptors (ORs), eight gustatory receptors, 17 ionotropic receptors, four sensory neuron membrane proteins, 32 odorant binding proteins (OBPs), and 12 chemosensory proteins (CSP) by RNA‐seq. Differential expression analyses in the antennae revealed significant upregulation of one minus‐C OBP (ClapOBP27) and one CSP (ClapCSP12) in the willow feeders. In contrast, one OR (ClapOR17), four minus‐C OBPs (ClapOBP02, 07, 13, 20), and one plus‐C OBP (ClapOBP32) were significantly upregulated in birch feeders. The differential expression pattern in the legs was more complex. To narrow down putative ligands acting as cues for host discrimination, the relative abundance and diversity of volatiles of the two host plant species were analyzed. In addition to salicylaldehyde (willow‐specific), both plant species differed mainly in their emission rate of terpenoids such as (E,E)‐α‐farnesene (high in willow) or 4,8‐dimethylnona‐1,3,7‐triene (high in birch). Qualitatively, the volatiles were similar between willow and birch leaves constituting an “olfactory bridge” for the beetles. Subsequent structural modeling of the three most differentially expressed OBPs and docking studies using 22 host volatiles indicated that ligands bind with varying affinity. We suggest that the evolution of particularly minus‐C OBPs and ORs in C. lapponica facilitated its host plant shift via chemosensation of the phytochemicals from birch as novel host plant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号