首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   35425篇
  免费   2159篇
  国内免费   4911篇
  2024年   53篇
  2023年   553篇
  2022年   656篇
  2021年   1078篇
  2020年   931篇
  2019年   1214篇
  2018年   992篇
  2017年   928篇
  2016年   998篇
  2015年   1230篇
  2014年   1649篇
  2013年   2235篇
  2012年   1594篇
  2011年   1626篇
  2010年   1404篇
  2009年   1757篇
  2008年   1919篇
  2007年   2080篇
  2006年   2126篇
  2005年   1962篇
  2004年   1801篇
  2003年   1701篇
  2002年   1580篇
  2001年   1309篇
  2000年   1091篇
  1999年   1027篇
  1998年   920篇
  1997年   831篇
  1996年   775篇
  1995年   731篇
  1994年   693篇
  1993年   496篇
  1992年   431篇
  1991年   361篇
  1990年   309篇
  1989年   217篇
  1988年   236篇
  1987年   213篇
  1986年   158篇
  1985年   146篇
  1984年   137篇
  1983年   65篇
  1982年   97篇
  1981年   47篇
  1980年   45篇
  1979年   28篇
  1978年   20篇
  1977年   11篇
  1976年   21篇
  1950年   6篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
992.
993.
A genetic disease observed in certain Quarter horses is hyperkalaemic periodic paralysis (HYPP). This disease causes attacks of paralysis which can be induced by ingestion of potassium. Recent studies have shown that HYPP in humans is due to single base changes within the adult skeletal muscle sodium channel gene. A large Quarter horse pedigree segregating dominant HYPP was studied to determine if mutations of the sodium channel gene are similarly responsible for HYPP in horses. We used cross-species, PCR-mediated, cDNA cloning and sequencing of the horse adult skeletal muscle sodium channel alpha-subunit gene to identify a polymorphism, and then used this polymorphism to see if the horse sodium channel gene was genetically linked to HYPP in horses. The sodium channel gene was indeed found to be tightly linked to HYPP (LOD = 2.7, theta = 0). Our results suggest that HYPP in horses involves the same gene as the clinically similar human disease, and indicates that these are homologous disorders. The future identification of the specific sodium channel mutation causing HYPP in Quarter horses will permit the development of accurate molecular diagnostics of this condition, as has been recently shown for humans.  相似文献   
994.
Genetic incompatibilities contribute to reproductive isolation between many diverging populations, but it is still unclear to what extent they play a role if divergence happens with gene flow. In contact zones between the "Crab" and "Wave" ecotypes of the snail Littorina saxatilis, divergent selection forms strong barriers to gene flow, while the role of post‐zygotic barriers due to selection against hybrids remains unclear. High embryo abortion rates in this species could indicate the presence of such barriers. Post‐zygotic barriers might include genetic incompatibilities (e.g. Dobzhansky–Muller incompatibilities) but also maladaptation, both expected to be most pronounced in contact zones. In addition, embryo abortion might reflect physiological stress on females and embryos independent of any genetic stress. We examined all embryos of >500 females sampled outside and inside contact zones of three populations in Sweden. Females' clutch size ranged from 0 to 1,011 embryos (mean 130 ± 123), and abortion rates varied between 0% and 100% (mean 12%). We described female genotypes by using a hybrid index based on hundreds of SNPs differentiated between ecotypes with which we characterized female genotypes. We also calculated female SNP heterozygosity and inversion karyotype. Clutch size did not vary with female hybrid index, and abortion rates were only weakly related to hybrid index in two sites but not at all in a third site. No additional variation in abortion rate was explained by female SNP heterozygosity, but increased female inversion heterozygosity added slightly to increased abortion. Our results show only weak and probably biologically insignificant post‐zygotic barriers contributing to ecotype divergence, and the high and variable abortion rates were marginally, if at all, explained by hybrid index of females.  相似文献   
995.
During the survey of two successive years 2012–2013, in nearby places of Gorakhpur districts, Uttar Pradesh, India, Arundo donax plants were found to be exhibiting witches’ broom, excessive branching accompanied with little leaf symptoms with considerable disease incidence. Nested PCR carried out with universal primers pair R16F2n/R16R2 employing the PCR (P1/P7) product as a template DNA (1:20) resulted in expected size positive amplification ~1.2 kb in all symptom-bearing plants suggested the association of phytoplasma with witches’ broom disease of Narkat plants. BLASTn analysis of the 16S rRNA gene sequence showed the highest (99%) sequence identity with Candidatus phytoplasma asteris (16SrI group). In phylogenetic analysis, the sequence data showed close relationships with the members of 16SrI phytoplasma and clustered within a single clade of 16SrI group and closed to B subgroup representatives. This is a first report of 16Sr I-B group phytoplasma associated with witches’ broom accompanied with little leaf disease of Narkat in India.  相似文献   
996.
Abstract

The eukaryotic endomembrane system (ES) is served by hundreds of dedicated proteins. Experimental characterization of the ES-associated molecular machinery in several model eukaryotes complemented by a recent progress in phylogenomics and comparative genomics have revealed a conserved complex core of the machinery that appears to have been established before the last eukaryotic common ancestor (LECA). At the same time, modern eukaryotes exhibit a huge variation in the ES resulting from a multitude of evolutionary processes operating along the ever-branching paths from the LECA to its descendants. The most important source of evolutionary novelty in the ES functioning has undoubtedly been gene duplication followed by divergence of the gene copies, responsible not only for the pre-LECA establishment of many multi-paralog families of proteins in the very core of the ES-associated machinery, but also for post-LECA lineage-specific elaborations via family expansions and the origin of novel components. Extreme sequence divergence has obscured actual homologous relationships between potentially many components of the machinery, even between orthologous proteins, as illustrated by the yeast Vps51 subunit of the vesicle tethering complex GARP hypothesized here to be a highly modified ortholog of a conserved eukaryotic family typified by the zebrafish Fat-free (Ffr) protein. A dynamic evolution of many ES-associated proteins, especially those centred around RAB and ARF GTPases, seems to take place at the level of their domain architectures. Finally, reductive evolution and recurrent gene loss are emerging as pervasive factors shaping the ES in all phylogenetic lineages.  相似文献   
997.
Progressive familial intrahepatic cholestasis is an autosomal recessive liver disorder caused by (biallelic) mutations in the ATP8B1 of ABCB11 gene. A nine-year-old girl with cholestasis was referred for genetic counseling. She had a family history of cholestasis in two previous expired siblings. Genetic analysis of the ABCB11 gene led to the identification of a novel homozygous mutation in exon 25. The mutation 3593- A > G lead to a missense mutation at the amino acid level (His1198Arg). This mutation caused PFIC2 due to abnormal function in the bile salt export pump protein (BSEP).  相似文献   
998.
Nance-Horan Syndrome (NHS) is a rare X-linked syndrome characterized by congenital cataract which leads to profound vision loss, characteristic dysmorphic features and specific dental anomalies. Microcornea, microphthalmia and mild or moderate mental retardation may accompany these features. Heterozygous females often manifest similarly but with less severe features than affected males. We describe two brothers who have the NHS phenotype and their carrier mother who had microcornea but not cataract. We identified a previously unreported frameshift mutation (c.558insA) in exon 1 of the NHS gene in these patients and their mother which is predicted to result in the incorporation of 11 aberrant amino acids prior to a stop codon (p.E186Efs11X). We also discussed genotype–phenotype correlation according to relevant literature.  相似文献   
999.
Phospholipid signaling has clear connections to a wide array of cellular processes, particularly in gene expression and in controlling the chromatin biology of cells. However, most of the work elucidating how phospholipid signaling pathways contribute to cellular physiology have studied cytoplasmic membranes, while relatively little attention has been paid to the role of phospholipid signaling in the nucleus. Recent work from several labs has shown that nuclear phospholipid signaling can have important roles that are specific to this cellular compartment. This review focuses on the nuclear phospholipid functions and the activities of phospholipid signaling enzymes that regulate metazoan chromatin and gene expression. In particular, we highlight the roles that nuclear phosphoinositides play in several nuclear‐driven physiological processes, such as differentiation, proliferation, and gene expression. Taken together, the recent discovery of several specifically nuclear phospholipid functions could have dramatic impact on our understanding of the fundamental mechanisms that enable tight control of cellular physiology.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号