首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181篇
  免费   19篇
  国内免费   40篇
  2024年   2篇
  2023年   3篇
  2022年   4篇
  2021年   4篇
  2020年   7篇
  2019年   11篇
  2018年   9篇
  2017年   10篇
  2016年   15篇
  2015年   7篇
  2014年   10篇
  2013年   19篇
  2012年   10篇
  2011年   10篇
  2010年   9篇
  2009年   13篇
  2008年   7篇
  2007年   8篇
  2006年   11篇
  2005年   10篇
  2004年   5篇
  2003年   7篇
  2002年   7篇
  2001年   5篇
  2000年   4篇
  1999年   2篇
  1998年   4篇
  1997年   3篇
  1996年   5篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1982年   2篇
排序方式: 共有240条查询结果,搜索用时 15 毫秒
71.
72.
The purpose of this pilot study was to explore the utility of the mammalian swine model under simulated intensive care unit (sICU) conditions and mechanical ventilation (MV) for assessment of the trajectory of circadian rhythms of sedation requirement, core body temperature (CBT), pulmonary mechanics (PM) and gas exchange (GE). Data were collected prospectively with an observational time-series design to describe and compare circadian rhythms of selected study variables in four swine mechanically ventilated for up to seven consecutive days. We derived the circadian (total variance explained by rhythms of τ between 20 and 28?h)/ultradian (total variance explained by rhythms of τ between 1 and <20?h) bandpower ratio to assess the robustness of circadian rhythms, and compare findings between the early (first 3 days) and late (subsequent days) sICU stay. All pigs exhibited statistically significant circadian rhythms (τ between 20 and 28?h) in CBT, respiratory rate and peripheral oxygen saturation, but circadian rhythms were detected less frequently for sedation requirement, spontaneous minute volume, arterial oxygen tension, arterial carbon dioxide tension and arterial pH. Sedation did not appear to mask the circadian rhythms of CBT, PM and GE. Individual subject observations were more informative than group data, and provided preliminary evidence that (a) circadian rhythms of multiple variables are lost or desynchronized in mechanically ventilated subjects, (b) robustness of circadian rhythm varies with subject morbidity and (c) healthier pigs develop more robust circadian rhythm profiles over time in the sICU. Comparison of biological rhythm profiles among sICU subjects with similar severity of illness is needed to determine if the results of this pilot study are reproducible. Identification of consistent patterns may provide insight into subject morbidity and timing of such therapeutic interventions as weaning from MV.  相似文献   
73.
Cover crops (CC) promote the accumulation of soil organic carbon (SOC), which provides multiple benefits to agro‐ecosystems. However, additional nitrogen (N) inputs into the soil could offset the CO2 mitigation potential due to increasing N2O emissions. Integrated management approaches use organic and synthetic fertilizers to maximize yields while minimizing impacts by crop sequencing adapted to local conditions. The goal of this work was to test whether integrated management, centered on CC adoption, has the potential to maximize SOC stocks without increasing the soil greenhouse gas (GHG) net flux and other agro‐environmental impacts such as nitrate leaching. To this purpose, we ran the DayCent bio‐geochemistry model on 8,554 soil sampling locations across the European Union. We found that soil N2O emissions could be limited with simple crop sequencing rules, such as switching from leguminous to grass CC when the GHG flux was positive (source). Additional reductions of synthetic fertilizers applications are possible through better accounting for N available in green manures and from mineralization of soil reservoirs while maintaining cash crop yields. Therefore, our results suggest that a CC integrated management approach can maximize the agro‐environmental performance of cropping systems while reducing environmental trade‐offs.  相似文献   
74.
微藻固定燃烧烟气中CO2 的研究进展   总被引:1,自引:0,他引:1  
空气中CO2浓度升高导致的气候变暖问题已经成为全球性的环境、科学、政治、经济问题。近年来,对可用于直接固定工业废气尤其是燃烧烟气中CO2的捕捉和封存 (CCS) 技术进行了广泛的研究。在这些技术中,微藻生物固定CO2是一种具有大规模应用前景和经济上可行的CCS技术。以下从藻种的筛选、烟气条件对微藻固定CO2的影响、高效光生物反应器的开发和微藻产物的利用等方面对微藻生物固定烟气中CO2的现状和发展以及作者所在实验室在这一领域的研究情况进行了分析和总结,最后对其技术前景进行了展望,以期对微藻固定燃烧烟气中CO  相似文献   
75.
Aim Savannas and seasonally‐dry ecosystems cover a significant part of the world's land surface. If undisturbed, these ecosystems might be expected to show a net uptake of methane (CH4) and a limited emission of nitrous oxide (N2O). Land management has the potential to change dramatically the characteristics and gas exchange of ecosystems. The present work investigates the contribution of warm climate seasonally‐dry ecosystems to the atmospheric concentration of nitrous oxide and methane, and analyses the impact of land‐use change on N2O and CH4 fluxes from the ecosystems in question. Location Flux data reviewed here were collected from the literature; they come from savannas and seasonally‐dry ecosystems in warm climatic regions, including South America, India, Australasia and Mediterranean areas. Methods Data on gas fluxes were collected from the literature. Two factors were considered as determinants of the variation in gas fluxes: land management and season. Land management was grouped into: (1) control, (2) ‘burned only’ and (3) managed ecosystems. The season was categorized as dry or wet. In order to avoid the possibility that the influence of soil properties on gas fluxes might confound any differences caused by land management, sites were grouped in homogeneous clusters on the basis of soil properties, using multivariate analyses. Inter‐ and intra‐cluster analysis of gas fluxes were performed, taking into account the effects of season, land management and main vegetation types. Results Soils were often acid and nutrient‐poor, with low water retention. N2O emissions were generally very low (median flux 0.32 mg N2O m?2 day?1), and no significant differences were observed between woodland savannas and managed savannas. The highest fluxes (up to 12.9 mg N2O m?2 day?1) were those on relatively fertile soils with high air‐filled porosity and water retention. The effect of season on N2O production was evident only when sites were separated in homogeneous groups on the basis of soil properties. CH4 fluxes varied over a wide range (?22.9 to 3.15 mg CH4 m?2 day?1, where the negative sign denotes removal of gas from the atmosphere), with an annual average daily flux of ?0.48 ± 0.96 (SD) mg CH4 m?2 day?1 in undisturbed (control) sites. Land‐use change dramatically reduced this CH4 sink. Managed sites were weak sinks of CH4 in the dry season and became sources of CH4 in the wet season. This was particularly evident for pastures. Burning alone did not reduce soil net CH4 oxidation, but decreased N2O production. Main conclusions Despite the low potential for N2O production, both in natural and managed conditions, tropical seasonally‐dry ecosystems represent a significant source of N2O (4.4 Tg N2O year?1) on a global scale, as a consequence of the large area they occupy. The same environments represent a potential CH4 sink of 5.17 Tg CH4 year?1. However, assuming that c. 30% of the tropical land is converted to different uses, the sink would be reduced to 3.2 Tg CH4 year?1. The limited information on fluxes from Mediterranean ecosystems does not allow a meaningful scaling up.  相似文献   
76.
When attacked by herbivores, land plants can produce a variety of volatile compounds that attract carnivorous mutualists. Plants and carnivores can benefit from this symbiotic relationship, because the induced defensive interaction increases foraging success of the carnivores, while reducing the grazing pressure exerted by the herbivores on the plants. Here, we examine whether aquatic phytoplankton use volatile chemical cues in analogous tritrophic interactions. Marine algae produce several classes of biogenic gases such as non‐methane hydrocarbons, organohalogens, ammonia and methylamines, and dimethylsulfide. The grazing‐induced release of marine biogenic volatiles is poorly understood, however, and its effect on the chemical ecology of plankton and the foraging behavior of predators is essentially unknown. We outline grazing‐induced defenses in algae and highlight the biogenic production of volatiles when phytoplankton are attacked by herbivores. The role of chemical signaling in marine ecology presents several possible avenues for future research, and we believe that progress in this area will result in better understanding of species competition, bloom development, and the structuring of food webs in the sea. This has further implications for biogeochemical cycles, because several key compounds are emitted that influence the chemistry of the atmosphere and global climate.  相似文献   
77.
Mesophilic and thermophilic biotreatment of BTEX-polluted air in reactors   总被引:4,自引:0,他引:4  
This study compares the removal of a mixture of benzene, toluene, ethylbenzene, and all three xylene isomers (BTEX) in mesophilic and thermophilic (50 degrees C) bioreactors. In the mesophilic reactor fungi became dominant after long-term operation, while bacteria dominated in the thermophilic unit. Microbial acclimation was achieved by exposing the biofilters to initial BTEX loads of 2-15 g m(-3) h(-1), at an empty bed residence time of 96 s. After adaptation, the elimination capacities ranged from 3 to 188 g m(-3) h(-1), depending on the inlet load, for the mesophilic biofilter with removal efficiencies reaching 96%. On the other hand, in the thermophilic reactor the average removal efficiency was 83% with a maximum elimination capacity of 218 g m(-3) h(-1). There was a clear positive relationship between temperature gradients as well as CO(2) production and elimination capacities across the biofilters. The gas phase was sampled at different depths along the reactors observing that the percentage pollutant removal in each section was strongly dependant on the load applied. The fate of individual alkylbenzene compounds was checked, showing the unusually high biodegradation rate of benzene at high loads under thermophilic conditions (100%) compared to its very low removal in the mesophilic reactor at such load (<10%). Such difference was less pronounced for the other pollutants. After 210 days of operation, the dry biomass content for the mesophilic and thermophilic reactors were 0.300 and 0.114 g g(-1) (support), respectively, reaching higher removals under thermophilic conditions with a lower biomass accumulation, that is, lower pressure drop.  相似文献   
78.
畜禽废弃物堆肥处理过程中产生的二氧化碳(CO2)、氧化亚氮(N2O)、甲烷(CH4)和氨气(NH3)等是重要的温室气体和大气污染物。但目前有关该过程气体排放的研究多基于室内小型模拟的反应器式堆肥,在工厂化堆肥条件下的原位气体排放监测较少。为探究工厂化堆肥产生气体对区域环境的影响,本研究对沈阳某堆肥厂畜禽废弃物堆体的气体排放进行了19 d的监测,并量化了排放氨气的自然丰度15N(δ15N)特征。结果表明: 堆置周期内,CO2、CH4、N2O和NH3的平均排放速率分别为86.8 g CO2-C·d-1·m-2、9.8 g CH4-C·d-1·m-2、3.7 mg N2O-N·d-1·m-2和736.6 mg NH3-N·d-1·m-2。温室气体日增温潜势(GWP)的贡献大小为CH4>CO2>NH3(间接)>N2O,其中CH4贡献了65%。堆肥排放NH3的δ15N在-21.8‰~-7.2‰,平均-11.6‰±1.2‰。本研究结果可为区域畜禽废弃物堆肥过程中温室气体排放的核算及大气氨溯源提供数据支持。  相似文献   
79.
Rice is a staple food for nearly half of the world's population, but rice paddies constitute a major source of anthropogenic CH4 emissions. Root exudates from growing rice plants are an important substrate for methane‐producing microorganisms. Therefore, breeding efforts optimizing rice plant photosynthate allocation to grains, i.e., increasing harvest index (HI), are widely expected to reduce CH4 emissions with higher yield. Here we show, by combining a series of experiments, meta‐analyses and an expert survey, that the potential of CH4 mitigation from rice paddies through HI improvement is in fact small. Whereas HI improvement reduced CH4 emissions under continuously flooded (CF) irrigation, it did not affect CH4 emissions in systems with intermittent irrigation (II). We estimate that future plant breeding efforts aimed at HI improvement to the theoretical maximum value will reduce CH4 emissions in CF systems by 4.4%. However, CF systems currently make up only a small fraction of the total rice growing area (i.e., 27% of the Chinese rice paddy area). Thus, to achieve substantial CH4 mitigation from rice agriculture, alternative plant breeding strategies may be needed, along with alternative management.  相似文献   
80.
Hydrogen is an important intermediate that is produced during carbohydrate fermentation to volatile fatty acid and utilized by methanogens to produce methane in the rumen. Ruminal volatile fatty acid and dissolved methane concentrations are more than 500 times greater than dissolved hydrogen concentration. Therefore, we hypothesized that dissolved hydrogen might have a higher sensitivity in response to dietary changes compared with volatile fatty acid and dissolved methane. Using goats, we investigated the effects of increasing dietary starch content (maize replaced with wheat bran) and supplementing with rhubarb rhizomes and roots on the relationships among dissolved hydrogen, dissolved methane and other fermentation end products. The study was conducted in a replicated 4×4 Latin square with a 2×2 factorial arrangement of four treatments: two starch levels (220 v. 320 g/kg dry matter (DM)), without and with rhubarb supplement (0% v. 2.8% of total mixed ration). Increased dietary starch and rhubarb supplementation did not alter volatile fatty acid concentrations or methane emissions in terms of g/day, g/g DM intake and g/g organic matter digested. However, goats fed the high-starch diet had greater dissolved hydrogen (P=0.005) and relative abundance of Selenomonas ruminantium (P<0.01), and lower (P=0.02) copy number of protozoa than those fed the low-starch diet. Rhubarb increased ruminal dissolved H2 (P=0.03) and total volatile fatty acid concentration (P<0.001), but decreased copies of bacteria (P=0.002). In conclusion, dissolved hydrogen appears to be more sensitive to dietary changes with starch content and rhubarb supplementation, when compared with volatile fatty acid concentrations and methane production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号