首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   181篇
  免费   19篇
  国内免费   40篇
  2024年   2篇
  2023年   3篇
  2022年   4篇
  2021年   4篇
  2020年   7篇
  2019年   11篇
  2018年   9篇
  2017年   10篇
  2016年   15篇
  2015年   7篇
  2014年   10篇
  2013年   19篇
  2012年   10篇
  2011年   10篇
  2010年   9篇
  2009年   13篇
  2008年   7篇
  2007年   8篇
  2006年   11篇
  2005年   10篇
  2004年   5篇
  2003年   7篇
  2002年   7篇
  2001年   5篇
  2000年   4篇
  1999年   2篇
  1998年   4篇
  1997年   3篇
  1996年   5篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1990年   2篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1982年   2篇
排序方式: 共有240条查询结果,搜索用时 31 毫秒
231.
The potential expansion of biofuel production raises food, energy, and environmental challenges that require careful assessment of the impact of biofuel production on greenhouse gas (GHG) emissions, soil erosion, nutrient loading, and water quality. In this study, we describe a spatially explicit integrative modeling framework (SEIMF) to understand and quantify the environmental impacts of different biomass cropping systems. This SEIMF consists of three major components: (1) a geographic information system (GIS)‐based data analysis system to define spatial modeling units with resolution of 56 m to address spatial variability, (2) the biophysical and biogeochemical model Environmental Policy Integrated Climate (EPIC) applied in a spatially‐explicit way to predict biomass yield, GHG emissions, and other environmental impacts of different biofuel crops production systems, and (3) an evolutionary multiobjective optimization algorithm for exploring the trade‐offs between biofuel energy production and unintended ecosystem‐service responses. Simple examples illustrate the major functions of the SEIMF when applied to a nine‐county Regional Intensive Modeling Area (RIMA) in SW Michigan to (1) simulate biofuel crop production, (2) compare impacts of management practices and local ecosystem settings, and (3) optimize the spatial configuration of different biofuel production systems by balancing energy production and other ecosystem‐service variables. Potential applications of the SEIMF to support life cycle analysis and provide information on biodiversity evaluation and marginal‐land identification are also discussed. The SEIMF developed in this study is expected to provide a useful tool for scientists and decision makers to understand sustainability issues associated with the production of biofuels at local, regional, and national scales.  相似文献   
232.
A probe for the extraction of soil gases is described. Novel features are the way the probe aperture within the soil can be manipulated from above, and the design of the tip to maximize gas extraction.  相似文献   
233.
A comprehensive biogeochemical model, Wetland‐DNDC, was applied to analyze the carbon and hydrologic characteristics of forested wetland ecosystem at Minnesota (MN) and Florida (FL) sites. The model simulates the flows of carbon, energy, and water in forested wetlands. Modeled carbon dynamics depends on physiological plant factors, the size of plant pools, environmental factors, and the total amount and turnover rates of soil organic matter. The model realistically simulated water level fluctuation, forest production, carbon pools change, and CO2 and CH4 emission under natural variations in different environmental factors at two sites. Analyses were focused on parameters and inputs potentially cause the greatest uncertainty in calculated change in plant and soil C and water levels fluctuation and shows that it was important to obtain accurate input data for initial C content, climatic conditions, and allocation of net primary production to various forested wetland components. The magnitude of the forest responses was dependent not only on the rate of changes in environmental factors, but also on site‐specific conditions such as climate and soil. This paper explores the ability of using the biogeochemical process model Wetland‐DNDC to estimate the carbon and hydrologic dynamics of forested wetlands and shifts in these dynamics in response to changing environmental conditions.  相似文献   
234.
The importance of snow and related cryospheric processes as an ecological factor has been recognized since at least the beginning of the twentieth century. Even today, however, many observations remain anecdotal. The research to date on cold-lands ecosystems results in scientists being unable to evaluate to what extent changes in the cryosphere will be characterized by abrupt changes in local and global biogeochemical cycles, and how these changes in seasonality may affect the rates and timing of key ecological processes. Studies of gas exchanges through snow have revealed that snow plays an important role in modulating wintertime soil biogeochemical processes, and that these can be the driving processes for gas exchange at the snow surface. Previous research has primarily focused on carbon dioxide, and resulted from episodic experiments at a number of snow-covered sites. Here we report new insights from several field sites on Niwot Ridge in the Colorado Rocky Mountains, including a dedicated snow gas flux research facility established at the 3340 m Soddie site. A novel in situ experimental system was developed at this site to continuously sample trace gases from above and within the snowpack for the duration of seasonal snow cover. The suite of chemical species investigated includes carbon dioxide, nitrous oxide, nitrogen oxides, ozone, and volatile inorganic and organic gases. Wintertime measurements have been supplemented by soil chamber experiments and eddy covariance measurements to allow assessment of the contribution of wintertime fluxes to annual biogeochemical budgets. This research has resulted in a plethora of new insight into the physics of gas transport through the snowpack, and the magnitude and the chemical and biogeochemical processes that control fluxes at the soil-snowpack and the snow-atmosphere interface. This article provides an overview of the history and evolution of this research, and highlights the findings from the ten articles that constitute this special issue.  相似文献   
235.
Phytomanagement of trace element-contaminated soils can reduce soil toxicity and restore soil ecological functions, including the soil gas exchange with the atmosphere. We studied the emission rate of the greenhouse gases (GHGs) CO2, CH4, and N2O; the potential CH4 oxidation; denitrification enzyme activity (DEA), and glucose mineralization of a Cu-contaminated soil amended with dolomitic limestone and compost, alone or in combination, after a 2-year phytomanagement with a mixed stand of Populus nigra, Salix viminalis, S. caprea, and Amorpha fruticosa. Soil microbial biomass and microbial community composition after analysis of the phospholipid fatty acids (PLFA) profile were determined. Phytomanagement significantly reduced Cu availability and soil toxicity, increased soil microbial biomass and glucose mineralization capacity, changed the composition of soil microbial communities, and increased the CO2 and N2O emission rates and DEA. Despite such increases, microbial communities were evolving toward less GHG emission per unit of microbial biomass than in untreated soils. Overall, the aided phytostabilization option would allow methanotrophic populations to establish in the remediated soils due to decreased soil toxicity and increased nutrient availability.  相似文献   
236.
The precautionary principle is promoted as a common sense approach that avoids unreasonable delays in taking action. A weak form of the precautionary principle, that action should not wait until all uncertainties are resolved, is indeed common sense and consistent with even the most elementary application of the methods of decision making under uncertainty to the climate change problem. The standard tools of decision analysis imply conclusions consistent with a weak precau tionary principle of taking some action before all the evidence is in. Decision theory also reveals what the basis is for stronger recommendations from the precautionary principle, to the effect that action should be based on the most pessimistic possible interpretation of the future. This conclusion is only possible if prior beliefs are so pessimistic and so strong that they would outweigh any possible new scientific evidence.  相似文献   
237.
Four kinds of cells ofChlorella protothecoides, green autotrophic cells, bacterially degraded green autotrophic cells, yellow heterotrophic cells and bacterially degraded yellow heterotrophic cells, were used to simulate thermal degradation and gas formation by heating without oxygen at 300°C for 100 h. The yield of pyrolysed hydrocarbon gases in yellow heterotrophic cells with bacterial degradation was 8.5 times higher than that of green autotrophic cells without bacterial degradation. The use of bacterially degraded yellow heterotrophic cells resulted in relatively more lipid and less protein. The results suggest that the hydrocarbon-producing potential of microplanktonic algae in nature may be greater than previously thought based on studies of green autotrophic cells.  相似文献   
238.
目录     
《生态学杂志》2018,29(2):0
  相似文献   
239.
《植物生态学报》2017,41(11):1208
Methane (CH4) is an important greenhouse gas, and is involved in atmospheric chemical reactions. Aquatic and hydric environments are important sources of atmospheric CH4. Majority of CH4 are transported and released to atmosphere by emerged herbaceous plants and hygrophytes in aquatic and hydric environments. In recent decades, there has been increasing attention on how plants transport CH4. During CH4 transportation processes, several interfaces of CH4 exchange play important roles. First, the tips of lateral roots are primary locations (hotspots) for CH4 entering the root systems and regulate the gross CH4 transportation. Then, the diaphragms in the aerenchyma and the root collar impose great resistances for the overall CH4 transportation processes. In early studies, it was controversial that whether CH4 emission from plants to atmosphere was controlled by stomas or micropores (small cracks and holes in aboveground part of plant except the blade). Recent studies have confirmed the dominant role of micropores for CH4 transportation and emission. The dead and damaged stems are widely considered to have positive effects on CH4 transportation. Diffusion and convection are the two main transporting mechanisms of CH4, with the efficiency of convection being generally higher than that of diffusion. Both biological (e.g. biomass and photosynthesis) and environmental (e.g. light, temperature and humidity) factors regulate the CH4 transportation. Many studies have contributed to understanding the CH4 transportation processes and mechanisms by emerged herbaceous plants and hygrophytes. However, there are still some questions needing further investigations. Issues of consideration may include the operational efficiency in the critical interfaces of CH4 exchange, the plant parts that play a decisive role in the entire CH4 transportation, the underlying roles of diffusion and convection on CH4 interfaces exchanges and entire long distance transports, the combined and coupling effects and mechanisms of biotic and abiotic factors, and the similarities and differences of CH4 transporting processes and mechanisms among plant species.  相似文献   
240.
Abstract

Examination of greenhouse gas emissions is crucial for understanding the global warming. For this reason, identification of the sources of greenhouse gas emissions is crucial. This paper presents a hybrid multi criteria decision making method, which combines analytic hierarchy process and technique for order preference by similarity to ideal solution and compares this method with actual data for identifying the risk priority of sources of greenhouse gas emissions. For this purpose, the historical data of 25-years, for six-greenhouse gas sources and three-greenhouse gases (CO2, CH4, N2O) are considered. Consequently, it was found that while incineration of wastes caused the minimum GHG emissions, energy sector caused the maximum GHG emissions. The results of this paper show that use of this hybrid method is easy and intelligible, and has a good potential for sorting the risk priority of sources of greenhouse gas emissions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号