首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16324篇
  免费   1121篇
  国内免费   754篇
  18199篇
  2024年   30篇
  2023年   298篇
  2022年   450篇
  2021年   401篇
  2020年   446篇
  2019年   546篇
  2018年   619篇
  2017年   460篇
  2016年   467篇
  2015年   513篇
  2014年   838篇
  2013年   1255篇
  2012年   574篇
  2011年   801篇
  2010年   690篇
  2009年   838篇
  2008年   858篇
  2007年   918篇
  2006年   861篇
  2005年   809篇
  2004年   656篇
  2003年   505篇
  2002年   552篇
  2001年   356篇
  2000年   261篇
  1999年   295篇
  1998年   294篇
  1997年   256篇
  1996年   233篇
  1995年   223篇
  1994年   236篇
  1993年   148篇
  1992年   150篇
  1991年   130篇
  1990年   113篇
  1989年   106篇
  1988年   84篇
  1987年   93篇
  1986年   72篇
  1985年   91篇
  1984年   139篇
  1983年   103篇
  1982年   105篇
  1981年   88篇
  1980年   80篇
  1979年   47篇
  1978年   23篇
  1977年   17篇
  1976年   20篇
  1975年   16篇
排序方式: 共有10000条查询结果,搜索用时 10 毫秒
311.
Summary Pyrolysis mass spectrometry (PyMS) was used to produce biochemical fingerprints from replicate frozen cell cultures of mouse macrophage hybridoma 2C11-12, human leukaemia K562, baby hamster kidney BHK 21/C13, and mouse tumour BW-O, and a fresh culture of Chinese hamster ovary CHO cells. The dimensionality of these data was reduced by the unsupervised feature extraction pattern recognition technique of auto-associative neural networks. The clusters observed were compared with the groups obtained from the more conventional statistical approaches of hierarchical cluster analysis. It was observed that frozen and fresh cell line cultures gave very different pyrolysis mass spectra. When only the frozen animal cells were analysed by PyMS, auto-associative artificial neural networks (ANNs) were employed to discriminate between them successfully. Furthermore, very similar classifications were observed when the same spectral data were analysed using hierarchical cluster analysis. We demonstrate that this approach can detect the contamination of cell lines with low numbers of bacteria and fungi; this approach could plausibly be extended for the rapid detection of mycoplasma infection in animal cell lines. The major advantages that PyMS offers over more conventional methods used to type cell lines and to screen for microbial infection, such as DNA fingerprinting, are its speed, sensitivity and the ability to analyse hundreds of samples per day. We conclude that the combination of PyMS and ANNs can provide a rapid and accurate discriminatory technique for the authentication of animal cell line cultures.  相似文献   
312.
313.
Milk samples from the stomachs of harp seal pups were analysed for Cu, Zn, Se, Cd and Hg, as were liver, kidney, and muscle from mother-pup pairs. Tissues were also analysed for MeHg. Milk contained, in addition to essential trace metals, Cd and Hg (57 ng/g and 6.5 ng/g respectively).
Pups had mercury in all three tissues. The percent methyl mercury in liver of pups was higher than in liver of mothers. Mercury in muscle was mostly methyl mercury in both mothers and pups. Total mercury in liver of mothers but not pups was correlated positively with selenium. Estimates of ingested mercury by pups indicated they had acquired most of their mercury during gestation.
Although mothers had cadmium in liver and kidney, it was not detected in tissues of pups. Cadmium did not transfer across the placenta, while mercury did. Tissue concentrations of Cu and Zn were higher in pups than mothers. The presence of metallothionein in pup tissues was postulated.
A strong positive correlation of copper and selenium between mothers and pups indicated transfer of these elements from mother to pup in direct proportion to their concentrations in maternal liver and kidney.  相似文献   
314.
R. A. Chylla  G. Garab  J. Whitmarsh 《BBA》1987,894(3):562-571
We used two different techniques to measure the recovery time of Photosystem II following the transfer of a single electron from P-680 to QA in thylakoid membranes isolated from spinach. Electron transfer in Photosystem II reaction centers was probed first by spectroscopic measurements of the electrochromic shift at 518 nm due to charge separation within the reaction centers. Using two short actinic flashes separated by a variable time interval we determined the time required after the first flash for the electrochromic shift at 518 nm to recover to the full extent on the second flash. In the second technique the redox state of QA at variable times after a saturating flash was monitored by measurement of the fluorescence induction in the absence of an inhibitor and in the presence of ferricyanide. The objective was to determine the time required after the actinic flash for the fluorescence induction to recover to the value observed after a 60 s dark period. Measurements were done under conditions in which (1) the electron donor for Photosystem II was water and the acceptor was the endogenous plastoquinone pool, and (2) Q400, the Fe2+ near QA, remained reduced and therefore was not a participant in the flash-induced electron-transfer reactions. The electrochromic shift at 518 nm and the fluorescence induction revealed a prominent biphasic recovery time for Photosystem II reaction centers. The majority of the Photosystem II reaction centers recovered in less than 50 ms. However, approx. one-third of the Photosystem II reaction centers required a half-time of 2–3 s to recover. Our interpretation of these data is that Photosystem II reaction centers consist of at least two distinct populations. One population, typically 68% of the total amount of Photosystem II as determined by the electrochromic shift, has a steady-state turnover rate for the electron-transfer reaction from water to the plastoquinone pool of approx. 250 e / s, sufficiently rapid to account for measured rates of steady-state electron transport. The other population, typically 32%, has a turnover rate of approx. 0.2 e / s. Since this turnover rate is over 1000-times slower than normally active Photosystem II complexes, we conclude that the slowly turning over Photosystem II complexes are inconsequential in contributing to energy transduction. The slowly turning over Photosystem II complexes are able to transfer an electron from P-680 to QA rapidly, but the reoxidation of QA is slow (t1/2 = 2 s). The fluorescence induction measurements lead us to conclude that there is significant overlap between the slowly turning over fraction of Photosystem II complexes and PS IIβ reaction centers. One corollary of this conclusion is that electron transfer from P-680 to QA in PS IIβ reaction centers results in charge separation across the membrane and gives rise to an electrochromic shift.  相似文献   
315.
Does the photosynthetic light‐acclimation need change in leaf anatomy?   总被引:20,自引:3,他引:20  
There is a strong correlation between leaf thickness and the light‐saturated rate of photosynthesis per unit leaf area (Pmax). However, when leaves are exposed to higher light intensities after maturation, Pmax often increases without increasing leaf thickness. To elucidate the mechanism with which mature leaves increase Pmax, the change in anatomical and physiological characteristics of mature leaves of Chenopodium album, which was transferred from low to high light condition, were examined. When compared with leaves subjected to low light continuously (LL leaves), the leaves transferred from low to high light (LH leaves) significantly increased Pmax. The transfer also increased the area of chloroplasts facing the intercellular space (Sc) and maintained a strong correlation between Pmax and Sc. The mesophyll cells of LL leaves had open spaces along cell walls where chloroplasts were absent, which enabled the leaves to increase Pmax when they were exposed to high light (LH). However, the LH leaves were not thick enough to allow further increase in Pmax to the level in HH leaves. Thus leaf thickness determines an upper limit of Pmax of leaves subjected to a change from low to high light conditions. Shade leaves would only increase Pmax when they have open space to accommodate chloroplasts which elongate after light conditions improve.  相似文献   
316.
P14 TCR transgenic CD8+ T cells (LCMV gp33-specific) were activated by antigen in the presence of either IL-2 or IL-2+IL-4 to generate effector cytotoxic T lymphocytes (CTLs). The therapeutic effectiveness of such IL-2- or IL-2+IL-4-grown CTLs was tested in mice that had received intravenous inoculations of B16.gp33 melanoma cells 7 days previously. Administration of P14 CTLs activated by antigen +IL-2+IL-4 was significantly more effective at reducing melanoma colony formation in the lung than those grown in the presence of antigen +IL-2. Highly significant improvement in survival was observed with 80% of B16.gp33-inoculated mice showing long-term survival after therapy with 10×106 antigen +IL-2+IL-4-activated P14 CTLs. Similar therapeutic effectiveness of antigen +IL-2+IL-4-activated P14 CTLs against subcutaneously inoculated B16.gp33 melanoma cells was also found. There was significant reduction in P14 CD8+ T cells in the peripheral blood of B16.gp33-inoculated mice than in mice that did not receive B16.gp33 melanoma cells, indicating possible homing of P14 CD8+ T cells to the site of tumor growth or antigen-induced apoptotic cell death. These results may have implications in tumor therapy using CTLs grown ex vivo, especially during early stages of tumor formation. They also support the concept that the therapeutic effectiveness of CTLs can be governed by the cytokine context in which they are activated.  相似文献   
317.
318.
Aim Atmospheric CO2 concentrations depend, in part, on the amount of biomass locked up in terrestrial vegetation. Information on the causes of a broad‐scale vegetation transition and associated loss of biomass is thus of critical interest for understanding global palaeoclimatic changes. Pollen records from the north‐eastern Tibet‐Qinghai Plateau reveal a dramatic and extensive forest decline beginning c. 6000 cal. yr bp . The aim of this study is to elucidate the causes of this regional‐scale change from high‐biomass forest to low‐biomass steppe on the Tibet‐Qinghai Plateau during the second half of the Holocene. Location Our study focuses on the north‐eastern Tibet‐Qinghai Plateau. Stratigraphical data used are from Qinghai Lake (3200 m a.s.l., 36°32′–37°15′ N, 99°36′–100°47′ E). Methods We apply a modern pollen‐precipitation transfer function from the eastern and north‐eastern Tibet‐Qinghai Plateau to fossil pollen spectra from Qinghai Lake to reconstruct annual precipitation changes during the Holocene. The reconstructions are compared to a stable oxygen‐isotope record from the same sediment core and to results from two transient climate model simulations. Results The pollen‐based precipitation reconstruction covering the Holocene parallels moisture changes inferred from the stable oxygen‐isotope record. Furthermore, these results are in close agreement with simulated model‐based past annual precipitation changes. Main conclusions In the light of these data and the model results, we conclude that it is not necessary to attribute the broad‐scale forest decline to human activity. Climate change as a result of changes in the intensity of the East Asian Summer Monsoon in the mid‐Holocene is the most parsimonious explanation for the widespread forest decline on the Tibet‐Qinghai Plateau. Moreover, climate feedback from a reduced forest cover accentuates increasingly drier conditions in the area, indicating complex vegetation–climate interactions during this major ecological change.  相似文献   
319.
Aim Propagule size and output are critical for the ability of a plant species to colonize new environments. If invasive species have a greater reproductive output than native species (via more and/or larger seeds), then they will have a greater dispersal and establishment ability. Previous comparisons within plant genera, families or environments have conflicted over the differences in reproductive traits between native and invasive species. We went beyond a genus‐, family‐ or habitat‐specific approach and analysed data for plant reproductive traits from the global literature, to investigate whether: (1) seed mass and production differ between the original and introduced ranges of invasive species; (2) seed mass and production differ between invasives and natives; and (3) invasives produce more seeds per unit seed mass than natives. Location Global. Methods We combined an existing data set of native plant reproductive data with a new data compilation for invasive species. We used t‐tests to compare original and introduced range populations, two‐way ANOVAs to compare natives and invasives, and an ANCOVA to examine the relationship between seed mass and production for natives and invasives. The ANCOVA was performed again incorporating phylogenetically independent contrasts to overcome any phylogenetic bias in the data sets. Results Neither seed mass nor seed production of invasive species differed between their introduced and original ranges. We found no significant difference in seed mass between invasives and natives after growth form had been accounted for. Seed production was greater for invasive species overall and within herb and woody growth forms. For a given seed mass, invasive species produced 6.7‐fold (all species), 6.9‐fold (herbs only) and 26.1‐fold (woody species only) more seeds per individual per year than native species. The phylogenetic ANCOVA verified that this trend did not appear to be influenced by phylogenetic bias within either data set. Main conclusions This study provides the first global examination of both seed mass and production traits in native and invasive species. Invasive species express a strategy of greater seed production both overall and per unit seed mass compared with natives. The consequent increased likelihood of establishment from long‐distance seed dispersal may significantly contribute to the invasiveness of many exotic species.  相似文献   
320.
Carbon transfer between plants via a common extraradical network of arbuscular mycorrhizal (AM) fungal hyphae has been investigated abundantly, but the results remain equivocal. We studied the transfer of carbon through this fungal network, from a Medicago truncatula donor plant to a receiver (1) M. truncatula plant growing under decreased light conditions and (2) M. truncatula seedling. Autotrophic plants were grown in bicompartmented Petri plates, with their root systems physically separated, but linked by the extraradical network of Glomus intraradices. A control Myc-/Nod- M. truncatula plant was inserted in the same compartment as the receiver plant. Following labeling of the donor plant with 13CO2, 13C was recovered in the donor plant shoots and roots, in the extraradical mycelium and in the receiver plant roots. Fatty acid analysis of the receiver's roots further demonstrated 13C enrichment in the fungal-specific lipids, while almost no label was detected in the plant-specific compounds. We conclude that carbon was transferred from the donor to the receiver plant via the AM fungal network, but that the transferred carbon remained within the intraradical AM fungal structures of the receiver's root and was not transferred to the receiver's plant tissues.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号