首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   44841篇
  免费   17484篇
  国内免费   153篇
  62478篇
  2024年   8篇
  2023年   42篇
  2022年   58篇
  2021年   502篇
  2020年   2864篇
  2019年   4376篇
  2018年   4641篇
  2017年   4630篇
  2016年   4345篇
  2015年   4228篇
  2014年   4113篇
  2013年   4508篇
  2012年   3879篇
  2011年   4051篇
  2010年   3535篇
  2009年   2374篇
  2008年   2537篇
  2007年   1973篇
  2006年   1956篇
  2005年   1644篇
  2004年   1307篇
  2003年   1406篇
  2002年   1217篇
  2001年   927篇
  2000年   466篇
  1999年   302篇
  1998年   41篇
  1997年   42篇
  1996年   46篇
  1995年   56篇
  1994年   44篇
  1993年   37篇
  1992年   34篇
  1991年   38篇
  1990年   18篇
  1989年   24篇
  1988年   18篇
  1987年   24篇
  1986年   25篇
  1985年   32篇
  1984年   18篇
  1983年   18篇
  1982年   16篇
  1981年   13篇
  1980年   11篇
  1979年   7篇
  1978年   9篇
  1977年   5篇
  1973年   4篇
  1972年   3篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
Long non‐coding RNAs (LncRNAs) and DNA methylation are important epigenetic mark play a key role in liver fibrosis. Currently, how DNA methylation and LncRNAs control the hepatic stellate cell (HSC) activation and fibrosis has not yet been fully characterized. Here, we explored the role of antisense non‐coding RNA in the INK4 locus (ANRIL) and DNA methylation in HSC activation and fibrosis. The expression levels of DNA methyltransferases 3A (DNMT3A), ANRIL, α‐Smooth muscle actin (α‐SMA), Type I collagen (Col1A1), adenosine monophosphate‐activated protein kinase (AMPK) and p‐AMPK in rat and human liver fibrosis were detected by immunohistochemistry, qRT‐PCR and Western blotting. Liver tissue histomorphology was examined by haematoxylin and eosin (H&E), Sirius red and Masson staining. HSC was transfected with DNMT3A‐siRNA, over‐expressing ANRIL and down‐regulating ANRIL. Moreover, cell proliferation ability was examined by CCK‐8, MTT and cell cycle assay. Here, our study demonstrated that ANRIL was significantly decreased in activated HSC and liver fibrosis tissues, while Col1A1, α‐SMA and DNMT3A were significantly increased in activated HSC and liver fibrosis tissues. Further, we found that down‐regulating DNMT3A expression leads to inhibition of HSC activation. Reduction in DNMT3A elevated ANRIL expression in activated HSC. Furthermore, we performed the over expression ANRIL suppresses HSC activation and AMPK signalling pathways. In sum, our study found that epigenetic DNMT3A silencing of ANRIL enhances liver fibrosis and HSC activation through activating AMPK pathway. Targeting epigenetic modulators DNMT3A and ANRIL, and offer a novel approach for liver fibrosis therapy.  相似文献   
992.
The PI3K/AKT pathway is frequently activated in endometrial carcinoma. BMI‐1 (B‐lymphoma Mo‐MLV insertion region 1) protein affects expression of PTEN (phosphatase and tensin homolog) in some cancers, but its significance for endometrial tumorigenesis is not known. The objective of this study was to determine the relationship between BMI‐1 and expression of factors affecting AKT (protein kinase B) phosphorylation level in endometrial cancer. The expression of proteins and mRNAs was investigated in endometrial cancer specimens and samples of non‐neoplastic endometrial tissue by Western blot and RT‐PCR, respectively. The impact of BMI‐1 down‐regulation on AKT phosphorylation and expression of genes coding for several phosphatases were studied in HEC1A cells. The results showed that BMI‐1 depletion caused increase in PHLPP1 and PHLPP2 (PH domain and leucine‐rich repeat protein phosphatases 1/2) expression and decrease in phospho‐AKT (pAKT) level. In more advanced tumours with higher metastatic potential, the expression of BMI‐1 was lower compared to tumours less advanced and without lymph node metastasis. There were significant inverse correlations between BMI‐1 and PHLPPs, especially PHLPP1 in normal endometrial samples. The inverse correlation between BMI‐1 and PHLPP1/PHLPP2 expression was observed in PTEN positive but not PTEN negative cancers. Low PHLPP2 expression in tumours predicted poorer overall survival. BMI‐1 impacts on AKT phosphorylation level in endometrial cells by regulation of PHLPP expression.  相似文献   
993.
One of the core symptoms of autism spectrum disorder (ASD) is impaired social interaction. Currently, no pharmacotherapies exist for this symptom due to complex biological underpinnings and distinct genetic models which fail to represent the broad disease spectrum. One convincing hypothesis explaining social deficits in human ASD patients is amotivation, however it is unknown whether mouse models of ASD represent this condition. Here we used two highly trusted ASD mouse models (male Shank3‐deficient [Shank3+/ΔC] mice modeling the monogenic etiology of ASD, and inbred BTBR mice [both male and female] modeling the idiopathic and highly polygenic pathology for ASD) to evaluate the level of motivation to engage in a social interaction. In the behavioral paradigms utilized, a social stimulus was placed in the open arm of the elevated plus maze (EPM), or the light compartment of the light‐dark box (LDB). To engage in a social interaction, mice were thus required to endure innately aversive conditions (open areas, height, and/or light). In the modified EPM paradigm, both Shank3+/ΔC and BTBR mice demonstrated decreased open‐arm engagement with a social stimulus but not a novel object, suggesting reduced incentive to engage in a social interaction in these models. However, these deficits were not expressed under the less severe aversive pressures of the LDB. Collectively, we show that ASD mouse models exhibit diminished social interaction incentive, and provide a new investigation strategy facilitating the study of the neurobiological mechanisms underlying social reward and motivation deficits in neuropsychiatric disorders.  相似文献   
994.
MicroRNAs (miRNAs) have been found to play a key role in drug resistance. In the current study, we aimed to explore the potential role of miR‐126 in trastuzumab resistance in breast cancer cells. We found that the trastuzumab‐resistant cell lines SKBR3/TR and BT474/TR had low expression of miR‐126 and increased ability to migrate and invade. The resistance, invasion and mobilization abilities of the cells resistant to trastuzumab were reduced by ectopic expression of miR‐126 mimics. In comparison, inhibition of miR‐126 in SKBR3 parental cells had the opposite effect of an increased resistance to trastuzumab as well as invasion and migration. It was also found that miR‐126 directly targets PIK3R2 in breast cancer cells. PIK3R2‐knockdown cells showed decreased resistance to trastuzumab, while overexpression of PIK3R2 increased trastuzumab resistance. In addition, our finding showed that overexpression of miR‐126 reduced resistance to trastuzumab in the trastuzumab‐resistant cells and that inhibition of the PIK3R2/PI3K/AKT/mTOR signalling pathway was involved in this effect. SKBR3/TR cells also showed increased sensitivity to trastuzumab mediated by miR‐126 in vivo. In conclusion, the above findings demonstrated that overexpression of miR‐126 or down‐regulation of its target gene may be a potential approach to overcome trastuzumab resistance in breast cancer cells.  相似文献   
995.
Rechargeable batteries based on MnO2 cathodes, able to operate in mild aqueous electrolytes, have attracted attention due to their appealing features for the design of low‐cost stationary energy storage devices. However, the charge/discharge mechanism of MnO2 in such media is still a matter of debate. Here, an in‐depth quantitative spectroelectrochemical analysis of MnO2 thin‐films provides a set of unrivaled mechanistic insights. A major finding is that charge storage occurs through the reversible two‐electron faradaic conversion of MnO2 into Mn2+ in the presence of a wide range of weak Brønsted acids, including the [Zn(H2O)6]2+ or [Mn(H2O)6]2+ complexes present in aqueous Zn/MnO2 batteries. Furthermore, it is shown that buffered electrolytes loaded with Mn2+ are ideal to achieve highly reversible conversion of MnO2 with both high gravimetric capacity and remarkably stable charging/discharging potentials. In the most favorable case, a record gravimetric capacity of 450 mA·h·g?1 is obtained at a high rate of 1.6 A·g?1, with a Coulombic efficiency close to 100% and a MnO2 utilization of 84%. Overall, the present results challenge the common view on MnO2 the charge storage mechanism in mild aqueous electrolytes and underline the benefit of buffered electrolytes for high‐performance rechargeable aqueous batteries.  相似文献   
996.
997.
The traditional Zn/MnO2 battery has attracted great interest due to its low cost, high safety, high output voltage, and environmental friendliness. However, it remains a big challenge to achieve long‐term stability, mainly owing to the poor reversibility of the cathode reaction. Different from previous studies where the cathode redox reaction of MnO2/MnOOH is in solid state with limited reversibility, here a new aqueous rechargeable Zn/MnO2 flow battery is constructed with dissolution–precipitation reactions in both cathodes (Mn2+/MnO2) and anodes (Zn2+/Zn), which allow mixing of anolyte and catholyte into only one electrolyte and remove the requirement for an ion selective membrane for cost reduction. Impressively, this new battery exhibits a high discharge voltage of ≈1.78 V, good rate capability (10C discharge), and excellent cycling stability (1000 cycles without decay) at the areal capacity ranging from 0.5 to 2 mAh cm‐2. More importantly, this battery can be readily enlarged to a bench scale flow cell of 1.2 Ah with good capacity retention of 89.7% at the 500th cycle, displaying great potential for large‐scale energy storage.  相似文献   
998.
Poly(3,4‐ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has been is applied as hole transport material in organic electronic devices for more than 20 years. However, the redundant sulfonic acid group of PEDOT:PSS has often been overlooked. Herein, PEDOT:PSS‐DA is prepared via a facile doping of PEDOT:PSS with dopamine hydrochloride (DA·HCl) which reacts with the redundant sulfonic acid of PSS. The PEDOT:PSS‐DA film exhibits enhanced work function and conductivity compared to those of PEDOT:PSS. PEDOT:PSS‐DA‐based devices show a power conversion efficiency of 16.55% which is the highest in organic solar cells (OSCs) with (poly[(2,6‐(4,8‐bis(5‐(2‐ethylhexyl)‐4‐fluorothiophen‐2‐yl)benzo[1,2‐b:4,5‐b′]dithio‐phene))‐co‐(1,3‐di(5‐thiophene‐2‐yl)‐5,7‐bis(2‐ethylhexyl)‐benzo[1,2‐c:4,5‐c′]dithiophene‐4,8‐dione))] (PM6):(2,2′‐((2Z,2′Z)‐((12,13‐bis(2‐ethylhexyl)‐3,9‐diundecyl‐12,13‐dihydro‐[1,2,5]thiadiazolo[3,4‐e]thieno[2′′,3′:4′,5′]thieno[2′,3′:4,5]pyrrolo[3,2‐g]thieno[2′,3′:4,5]thieno[3,2‐b]indole‐2,10‐diyl)bis(methanylylidene))bis(5,6‐difluoro‐3‐oxo‐2,3‐dihydro‐1H‐indene‐2,1‐diylidene))dimalononitrile) (Y6) as the active layer. Furthermore, PEDOT:PSS‐DA also exhibits enhanced performance in three other donor/acceptor systems, exhibiting high compatibility in OSCs. This work demonstrates that doping PEDOT:PSS with various amino derivatives is a potentially efficient strategy to enhance the performance of PEDOT:PSS in organic electronic devices.  相似文献   
999.
Mono‐ and multimetallic nanoparticles (NPs) have diverse and tunable physicochemical properties that arise from their compositions as well as crystallite size and shape. The ability to control precisely the composition and structure of NPs through synthesis is central to achieving state‐of‐the‐art designer metal NPs for use as catalysts and electrocatalysts. However, a major limitation to the use of designer metal NPs as catalysts is the ability to scale their syntheses while maintaining structural precision. To address this challenge, continuous flow routes to metal NPs involving the use of droplet microreactors are being developed, providing the synthetic versatility necessary to achieve known and completely new nanostructures. This progress report outlines how the chemistry and process parameters of droplet microreactors can be used to achieve high performing nanocatalysts through control of NP composition, size, shape, and architecture and outlines directions toward previously unimaginable nanostructures.  相似文献   
1000.
Electrocatalysis is the most important electrode reactions for many energy storage and conversion devices, which are considered a key part of the resolution of the energy crisis. Toward this end, design of efficient electrocatalysts is of critical significance. While extensive research has been extended to develop excellent electrocatalysts, the fundamental understanding of the relationship between the electronic and structural properties of electrocatalysts and the catalytic activity must remain a priority. In this review, the activity modulation of electrocatalysts by charge transfer effects, including intramolecular and intermolecular charge transfer, is systematically introduced. With suitable charge transfer modification, such as heteroatom doping, defect engineering, molecule functionalization, and heterojunctions, the electrocatalytic activity of carbon‐based electrocatalysts can be significantly boosted. The manipulation of the electronic structure of carbon‐based materials by charge transfer may serve as a fundamental mechanism for performance enhancement. After establishing an understanding of the relationship between catalytic activity and charge transfer, the opportunities and challenges for the design of electrocatalyst with charge transfer effects are discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号